Modell Galerie

Die Modell Galerie umfasst COMSOL Multiphysics Modelldateien aus einer Vielzahl von Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Sie können fertige Modelle herunterladen sowie Schritt-für-Schritt-Anleitungen, mit denen Sie die Modelle nachbauen können, und verwenden Sie die Modelle als Ausgangspunkt für Ihre eigenen Anwendungen. Nutzen Sie die Quick Search, um die für Ihren Fachbereich relevanten Modelle zu finden. Um die Dateien herunterzuladen, loggen Sie sich ein oder erzeugen Sie einen COMSOL Access Account, der mit einer gültigen COMSOL Lizenz assoziiert ist.

Heat Sink

This model is intended as a first introduction to simulations of fluid flow and conjugate heat transfer. It shows you how to: Draw an air box around a device in order to model convective cooling in this box, set a total heat flux on a boundary using automatic area computation, and display results in an efficient way using selections in data sets.

Solar Panel in Periodic Flow

The coupling of fluid flow and structural mechanics is a challenging problem for several reasons. The fluid flow problem usually requires a specific kind of mesh that is not appropriate for structural mechanics. Additionally, one may want to include geometric features in the structural model that are not significant for the fluid flow model. This model computes the structural stresses and ...

Airflow Over an Ahmed Body

The Ahmed body represents a simplified, ground vehicle geometry of a bluff body type. Its shape is simple enough to allow for accurate flow simulation but retains some important practical features relevant to automobile bodies. This model describes how to calculate the turbulent flow field around a simple car-like geometry using the Turbulent Flow, k-epsilon interface. Detailed instructions ...

Flow in a Pipe Elbow

Water flow in a 90 degree pipe elbow. The flow is simulated using the k-omega turbulence model. The result is compared to engineering correlations.

Boiling Water

Boiling flow is an example of phase transition initiated by raising the temperature of a liquid above its saturation temperature. It is possible to accomplish this in many ways; in this example by applying an external heat flux to a solid surface in contact with the liquid. There are three distinct regimes that characterize boiling induced by a heated surface: nucleate, transition, and film. ...

Droplet Breakup in a T-junction

Emulsions consist of small liquid droplets immersed in an immiscible liquid and widely occur in the production of food, cosmetics, fine chemicals, and pharmaceutical products. The quality of the product is typically dependent on the size of the droplets. Simulating these processes can help in optimizing these droplets as well as other process variables. This model studies the volume mass ...

Particle Tracing in a Micromixer

Micromixers can either be static or dynamic depending on the required mixing time and length scale. For static mixers, the Reynolds number has to be suitable high to induce turbulence enhanced mixing. Often micromixers operate in the laminar flow regime due to their small characteristic size. The diffusivity of a solute in the flowing fluid may also be extremely small, on the order of 10?10m2/s. ...

NACA 0012 Airfoil

This model simulates the flow around an inclined NACA 0012 airfoil at different angles of attack using the SST turbulence model. The results show good agreement with the experimental lift data of Ladson and the pressure data of Gregory and O’Reilly.

Fully-coupled Physics with Joule Heating, CFD and Chemical Reactions

In this example, a fluid carrying several chemical components is pumped into a detector compartment. A wire in the center of the detector is heated through Joule heating, which is supposed to detect changes in density through convective cooling. However, the higher temperature around the wire causes the ignition of exothermic chemical reactions, which in turn increase the temperature even more. ...

Laminar Flow in a Baffled Stirred Mixer

This model exemplifies the use of the Rotating Machinery interface, which allows you to model moving rotating parts in, for example, stirred tanks, mixers, and pumps. The Rotating Machinery interface formulates the Navier-Stokes equations in a rotating coordinate system. Parts that are not rotated are expressed in the fixed material coordinate system. The rotating and fixed parts need to be ...

Quick Search

1 - 10 of 46 First | < Previous | Next > | Last