Modell Galerie

The Model Gallery features COMSOL Multiphysics model files from a wide variety of application areas including the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use models and step-by-step instructions for building the model, and use these as a starting point for your own modeling work. Use the Quick Search to find models relevant to your area of expertise, and login or create a COMSOL Access account that is associated with a valid COMSOL license to download the model files.

Flow in an Airlift Loop Reactor

This example illustrates multiphase flow modeling in an airlift loop reactor. The reactor is filled with water and air bubbles are injected at the bottom through two frits. Due to buoyancy, the bubbles rise, inducing a circulating motion of the liquid. The model specifically investigates the effect of including bubble-induced turbulence.

Airflow Over an Ahmed Body

The Ahmed body represents a simplified, ground vehicle geometry of a bluff body type. Its shape is simple enough to allow for accurate flow simulation but retains some important practical features relevant to automobile bodies. This model describes how to calculate the turbulent flow field around a simple car-like geometry using the Turbulent Flow, k-epsilon interface. Detailed instructions ...

Stationary Incompressible Flow over a Backstep

This tutorial model solves the incompressible Navier-Stokes equations in a backstep geometry using the Laminar Flow interface. A characteristic feature of fluid flow in geometries of this kind is the recirculation region that forms where the flow exits the narrow inlet region. The model clearly demonstrates the formation of such a region, which is best displayed by visualizing the flow ...

Rising Bubble

The level set method is well suited for problems with moving boundaries in which the geometry’s topology changes with time. A bubble of oil that travels up through water and finally merges with oil at the top causes this kind of topology change. For problems where the topology is unchanged as a function of time, as in free surface movement in a tank (no splashing) and impeller stirring, it is ...

Viscous Heating in a Fluid Damper

Fluid dampers are used in military devices for shock isolation and in civil structures for suppressing earthquake-induced shaking and wind-induced vibrations, among many other applications. Fluid dampers work by dissipating the mechanical energy into heat. This model shows the phenomenon of viscous heating and consequent temperature increase in a fluid damper. Viscous heating is also important in ...

Particle Tracing in a Micromixer

Micromixers can either be static or dynamic depending on the required mixing time and length scale. For static mixers, the Reynolds number has to be suitable high to induce turbulence enhanced mixing. Often micromixers operate in the laminar flow regime due to their small characteristic size. The diffusivity of a solute in the flowing fluid may also be extremely small, on the order of 10?10m2/s. ...

Displacement Ventilation of Air in a Room

In general, there are two classes of ventilation: mixing ventilation and displacement ventilation. In displacement ventilation, air enters a room at the floor level and displaces warmer air to achieve the desired temperature. Heating sources in the room can include running electronic devices, or inlet jets of warm air. A potential issue with the displacement ventilation approach is that ...

Transient elastohydrodynamic squeeze film interaction

This benchmark model computes the transient pressure distribution and film height in a squeeze film bearing for lubrication in a nonconformal conjunction of a solid sphere and an elastic wall separated by a lubricant film. This model solves the benchmark case of hydrodynamic interaction between a solid sphere and a wall separated by a lubricant film, and extends the benchmark case to include ...

Modeling Nonisothermal Flow with Gravity Volume Forces

The influence of gravity on the flow pattern is often an important issue when modeling flow in fluids with variable density. You can account for this influence in the model equations by adding, to the momentum balances, the volume force. This model shows a simple example of the implementation of boundary conditions when volumetric forces are included in the momentum balances. This can be used ...

Flow in a Pipe Elbow

Water flow in a 90 degree pipe elbow. The flow is simulated using the k-omega turbulence model. The result is compared to engineering correlations.

Quick Search