Modell Galerie

Die Modell Galerie umfasst COMSOL Multiphysics Modelldateien aus einer Vielzahl von Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Sie können fertige Modelle herunterladen sowie Schritt-für-Schritt-Anleitungen, mit denen Sie die Modelle nachbauen können, und verwenden Sie die Modelle als Ausgangspunkt für Ihre eigenen Anwendungen. Nutzen Sie die Quick Search, um die für Ihren Fachbereich relevanten Modelle zu finden. Um die Dateien herunterzuladen, loggen Sie sich ein oder erzeugen Sie einen COMSOL Access Account, der mit einer gültigen COMSOL Lizenz assoziiert ist.

Electrical Signals in a Heart

Modeling the electrical activity in cardiac tissue is an important step in understanding the patterns of contractions and dilations in the heart. The heart produces rhythmic electrical pulses, which trigger the mechanical contractions of the muscle. A number of heart conditions involve an elevated risk of re-entry of the signals. This means that the normal steady pulse is disturbed, a severe and ...

Parameterized Busbar Geometry

This is a template MPH-file containing the physics interfaces and the parameterized geometry for the model Electrical Heating in a Busbar.

Axisymmetric Transient Heat Transfer

This is a benchmark model for an axisymmetric transient thermal analysis. The temperature on the boundaries changes from 0 degrees C to 1000 degrees C at the start of the simulation. The temperature at 190 s from the anlysis is compared with a NAFEMS benchmark solution.

Effective Diffusivity in Porous Materials

Transport through porous structures is usually treated using simplified homogeneous models with effective transport properties. This is in most cases a necessity, since the typical dimensions of the pores and particles making up the porous structure are several orders of magnitude smaller than the size of the domain that is to be modeled. This model introduces the concept of effective ...

Rock Fracture Flow

A potential flow model of fluid flow in a rock fracture uses the so-called Reynolds equation. It shows how to use experimental data interpolated to a function used in the equation.

Acoustics of a Muffler

This is a model of the pressure wave propagation in a muffler for a combustion engine. The approach is general for analysis of damping of propagation of harmonic pressure waves. The model shows how 3D acoustics can be modeled in fairly complex geometries. It also shows COMSOL Multiphysics' coupling variable feature between different boundaries. The problem is solved in the frequency domain and ...

Solution of the Schrödinger Equation for the Hydrogen Atom

This example shows how to compute energy levels and electron orbits for the hydrogen atom. It models the atom as a 1-particle system using the stationary Schrödinger equation. Before solving this problem in COMSOL Multiphysics, the dimension of the problem is firstly reduced from three to two by using cylindrical coordinates (rho, phi, z). The model is then set up using the PDE Coefficient ...

Electric Sensor

This is a model from electric impedance tomography, a method of imaging the interior permittivity distribution of a body by measuring current and voltage at the surface. This model demonstrates how the shape and placement of figures with different material properties inside a closed box can be determined with this non-invasive technique. Applying a potential difference on the boundaries of ...

Eigenmodes of a Room

When designing a concert hall it’s extremely important to take the resonances into account. For a clear and neutral sound, the eigenfrequencies should be evenly spread through the registers. For the home stereo owner, who can’t actually change the shape of his living room, another question is more relevant: where should the speakers be put for best sound? To illustrate the effects we are ...

Joule Heating in a MEMS Device

This model exemplifies the use of the Material Library in the modeling of Joule heating in MEMS devices. The purpose of this analysis is to estimate the temperature of a conductor given an applied electrical potential difference. Both the thermal and electrical conductivities are temperature dependent. The influence of the temperature on the electrical conductivity results in a nonlinear ...

Quick Search