Modell Galerie

Die Modell Galerie umfasst COMSOL Multiphysics Modelldateien aus einer Vielzahl von Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Sie können fertige Modelle herunterladen sowie Schritt-für-Schritt-Anleitungen, mit denen Sie die Modelle nachbauen können, und verwenden Sie die Modelle als Ausgangspunkt für Ihre eigenen Anwendungen. Nutzen Sie die Quick Search, um die für Ihren Fachbereich relevanten Modelle zu finden. Um die Dateien herunterzuladen, loggen Sie sich ein oder erzeugen Sie einen COMSOL Access Account, der mit einer gültigen COMSOL Lizenz assoziiert ist.

DC Glow Discharge

DC glow discharges in the low-pressure regime have long been used for gas lasers and fluorescent lamps. DC discharges are attractive to study because the solution is time independent. The 1D and 2D models show how to use the DC Discharge interface to set up an analysis of a positive column. The discharge is sustained by emission of secondary electrons at the cathode.

Model of an Atmospheric Pressure Corona Discharge

This model simulates a negative corona discharge occurring in between two co-axially fashioned conductors. The negative electric potential is applied to the inner conductor and the exterior conductor is grounded. The modeled discharge is simulated in argon at atmospheric pressure.

Dielectric Barrier Discharge

This model simulates electrical breakdown in an atmospheric pressure gas. Modeling dielectric barrier discharges in more than one dimension is possible, but the results can be difficult to interpret because of the amount of competing physics in the problem. In this simple model the problem is reduced to 1D by assuming the dielectric gap is much smaller than the diameter of the plates. To ...

Thermal Plasma

This model simulates a plasma at medium pressure (2 torr) where the plasma is still not in local thermodynamic equilibrium. At low pressures the two temperatures are decoupled but as the pressure increases the temperatures tend towards the same limit.

Drift Diffusion Tutorial Model

The Drift Diffusion interface solves a pair of reaction/advection/diffusion equations, one for the electron density and the other for the mean electron energy. This tutorial example computes the electron number density and mean electron energy in a drift tube. Electrons are released due to thermionic emission on the left boundary with an assumed mean electron energy. The electrons are then ...

Electronegative inductively coupled plasma

Electronegative plasmas exhibit different characteristics than electropositive discharges due to the presence of negative ions. This model simulates an inductively coupled plasma for a mixture of Argon (30%) and Oxygen (70%). The plasma chemistry consists of 62 reactions and 15 species. The negative ions are held in the core of the plasma because they cannot escape the ambipolar field.

Electrodeless Lamp

This model simulates an electrodeless lamp with argon/mercury chemistry. The low excitation threshold for mercury atoms means that even though the mercury is present in small concentrations, its behavior dominates. There is strong UV emission from the plasma at 185 nm and 253 nm. The UV emission can stimulate phosphors coated on the surface of the bulb. From an electrical point of view, the lamp ...

Dipolar Microwave Plasma Source

This model presents a 2D axisymmetric dipolar microwave plasma source sustained through resonant heating of the electrons. This is known as electron cyclotron resonance (ECR), which occurs when a suitable high magnetic flux density is present along with the microwaves. This is an advanced model that showcases many of the features that make COMSOL unique, including: Infinite elements for the ...

In-Plane Microwave Plasma

Wave heated discharges may be very simple, where a plane wave is guided into a reactor using a waveguide, or very complicated as in the case with ECR (electron cyclotron resonance) reactors. In this example, a wave is launched into reactor and an Argon plasma is created. The wave is partially absorbed and reflected by the plasma which sustains the plasma.

Surface Chemistry Tutorial

Surface chemistry is often the most important and most overlooked aspect of reacting flow modeling. Surface rate expressions can be hard to find or not even exist at all. Often it is preferable to use sticking coefficients to describe surface reactions because they can be estimated intuitively. The tutorial model simulates outgassing from a wafer during a chemical vapor deposition (CVD) ...

Quick Search

1 - 10 of 21 First | < Previous | Next > | Last