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Abstract: Distributed Feedback Fiber Laser 
(DFB-FL) sensors are increasingly used in aero-
nautical applications. One of the newest such 
application consists in detecting the “transition” 
zone between laminar and turbulent air flow 
upon the extrados surface of an aircraft wing. In 
this specific application DFB-FL are operated as 
air pressure sensors monitoring amplitude varia-
tions of ~1 Pa (laminar flow) up to ~10Pa (turbu-
lent flow) with repetition frequencies in the 
range 500 Hz – 10kHz. DFB-FL sensors consist 
in single mode rare earth ions doped optic fiber 
in which Bragg grating are created by using UV 
radiation. In most cases, as laser active centers, 
Er3+ ions are used for doping the optic fiber. 
DFB-FL use as extremely sensitive sensors relies 
on laser resonator parameter variation induced 
by the environment factor. Among the laser 
resonator parameter variation the modification 
Bragg grating wavelength and laser power optic 
fiber transmission are included. In this paper, we 
propose a study of an Er3+ DFB-FL sensor using 
COMSOL Multiphysics. The main purpose of 
this study is to provide essential data for a proper 
design of a device of this type. 
 
Keywords: DFB-FL sensor, laminar and turbu-
lent flow 
 
1. Introduction 
 

This paper presents preliminary theoretical 
analysis results obtained in investigating distrib-
uted feedback fiber lasers (DFB-FL) and distrib-
uted Bragg reflector fiber lasers (DBR-FL) dedi-
cated to a new aeronautical application consist-
ing into detection of transition zone existing be-
tween the laminar and turbulent air flow upon 
the extrados wing surface of an aircraft. DFB-FL 
and DBR-FL possess certain unique properties 
that make them quite attractive for a number of 
different applications. They are inherently fiber 
compatible, and very simple passive thermal 

stabilization is sufficient to ensure the stability of 
the laser.  

A number of different active dopants such as 
erbium, ytterbium, neodymium and thulium can 
be used in order to cover different windows of 
the optical spectrum. These features, combined 
with the ability to define the emitted wavelength 
precisely through the grating structure along with 
the narrow linewidth and low relative intensity 
noise (RIN), make DFB-FL and DBR-FL very 
advantageous for telecommunication applica-
tions [1]–[3]. In addition, a number of DFB fiber 
lasers can be configured in a parallel array to 
provide flexibility in pumping conditions and 
provide pump redundancy [2], [4].  

Robust single polarization and narrow 
linewidth of DFB lasers are very desirable for 
sensor systems [5]–[7]. Alternatively, DFB la-
sers can be made to operate in stable dual polari-
zation regime so that simultaneous measure-
ments can be carried out [8]–[10]. In addition to 
the sensing and telecom applications, DFB fiber 
lasers suitable for high-power applications have 
been demonstrated [11].  

 
2. Theory 
 

An important aeronautical application of fiber 
optic sensors consists in determination of transi-
tion zone between laminar and turbulent flow of 
air along the wing surface. Intermittent regime 
occurring in-between these two regions (transi-
tion) is characterized by turbulent bursts in lami-
nar flow.  

The basic idea of this type of measurement is 
to evaluate the pressure variation in the two 
zones: 
1. Laminar flow - relative constant value of air 

static pressure, low frequency (~ 100 Hz) and 
small amplitude (ΔP ~ 1 Pa) pressure varia-
tions. 
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2. Turbulent flow - larger and nonstationary 
value of air static pressure, higher frequency 
(~ 10 kHz) and higher amplitude (ΔP ~ 10 Pa) 
pressure variations. 

 
Fig. 1 Schematic representation of the investigated 
aeronautical application of DFB-FL and DBR-FL. 

The main investigated aeronautical DFB-FL 
and DBR-FL sensors application consists in de-
termination of the transition zone (line) between 
laminar and turbulent air flow along the aircraft 
wing surface. The laminar and turbulent bound-
ary layers can be observed in Fig. 1.   

Possible fiber optic “reaction”: linear glass 
strain deformation (glass Young’s modulus of 
elasticity is E = 50 ÷ 90·109 N/m2) under air tur-
bulent pressure bursts (deformations of 10-9 ÷10-8 
m) is extremely difficult to measure even by op-
tical interferometer methods. In this situation 
micro-bending of fiber optic appears to be more 
feasible deformation as an effect of turbulent air 
flow pressure bumps. The laminar and turbulent 
air flow zones along the aircraft wing surface are 
indicated. One possible position of the fiber optic 
sensor can be observed. 

In Fig. 2 it can be observed that the fiber optic 
sensor is embedded close (0.2 mm depth) to the 
wing surface. The fiber optic sensor is placed 
into a soft material, like paraffin, under an 0.2 
mm thick aluminum foil. 

 
Fig.2 Insights of one possible way of mounting the 
DFB-FL and/or DBR-FL in the wing for determina-
tion of transition zone between laminar and turbulent 
air flow along the aircraft wing surface 

One possible procedure for reading the fiber 
optic sensor is presented schematically in Fig. 3.  
This possible procedure is based on precise 
evaluation of lasing wavelength, lasing, which 
depends on the laser resonant cavity length. 

 

 
Fig. 3 Some insights about the structure of the DFB-
FL and/or DBR-FL proposed to be used for the deter-
mination of the transition zone between laminar and 
turbulent air flow along the wing surface 

 
Traditionally, there have been three main DFB 

laser cavity designs that offer different perform-
ance and distinctive operational characteristics, 
presented in the followings. 

It was recently shown that the classic paramet-
ric optimization approach for a DFB laser, i.e., 
the definition of the optimum resonator geometry 
and dimensional values, is analogous to Rigrod 
optimization [18] of reflectivity in Fabry–Pérot 
laser cavities of fixed length. It can also be 
shown that it is possible to further improve the 
DFB laser efficiency by increasing the effective 
cavity length without changing the total device 
length and optimum reflectivity, using a step-
apodized profile. Both optimization approaches 
are parametric in nature. The main cavity fea-
tures are defined a priori, and their parameters 
are continuously varied until a maximum effi-
ciency is reached. However, none of these ap-
proaches guarantees that the ultimate, i.e., 
maximum possible, efficiency for the given me-
dium has been achieved. In this paper, a drasti-
cally different approach is followed. 

Using this information, the developed algo-
rithm calculates the required grating strength 
distribution that results in the desired optimum 
signal, pump, and gain distribution. 

In Fig. 4, 5 and 6 the schematics of the inves-
tigated DFB-FL structures are presented. The 
main effort pointed on structures presented in 
Fig. 5 and 6. 

 

 
 

Fig. 4 Refractive index profile for conventional DFB 
laser designs. The classic design and two-wavelength 

bidirectional operation  
 



The classic design and two-wavelength bidi-
rectional operation is displayed in Fig. 4. It con-
sists of a uniform refractive index grating, with 
constant amplitude and constant period, incorpo-
rated in an active medium. This type of DFB 
laser operates at two fundamental longitudinal 
modes at different wavelengths, corresponding to 
the edges of the grating bandgap, and gives 
symmetric output powers from both ends, which 
are equally divided between these two modes 
[12]. Such a cavity provides dual-wavelength 
bidirectional operation. 

 

 
 

Fig. 5 Refractive index profile for conventional DFB 
laser designs. Symmetric-phase shifted design and 

single-wavelength bidirectional operation  
 

Fig. 5 shows the symmetric-phase shifted de-
sign and single-wavelength bidirectional opera-
tion. In practice, however, single-wavelength 
operation is desirable. This is achieved by intro-
ducing a π–shift in the spatial phase of the grat-
ing [13]–[15]. If the phase shift is located in the 
middle of the grating due to the symmetry of the 
cavity, the output powers at both ends are equal. 
Such a cavity provides single-wavelength opera-
tion, coinciding with the grating Bragg wave-
length, and bidirectional operation. 

 

 
 

Fig. 6 Refractive index profile for conventional DFB 
laser designs. Asymmetric π-phase-shifted design and 

single-wavelength unidirectional operation  
 

Asymmetric π-phase-shifted design and sin-
gle-wavelength unidirectional operation is shown 
in Fig. 6. In addition to single-wavelength emis-
sion, unidirectional is a very desirable feature of 
high-performance lasers. By placing the phase 
shift asymmetrically with respect to the grating 
center, as shown in Fig. 6, larger output power is 
obtained from the shorter end [10], [16]. In this 
asymmetric design, the maximum output power 
from the desired end is obtained for a particular 
phase-shift position and coupling coefficient 
value.  

 
 

Fig. 7 Standard asymmetric DFB-FL structure  
 
Standard asymmetric DFB-FL structure is il-

lustrated in Fig. 7. The optimum position of the 
π-phase shift position (zp) can be observed. D1 
and D2 represent the “penetration” depth of elec-
tromagnetic field into the Bragg grating zones. 

The standard coupled-mode equations for 
counter-propagating fields are used (see, e.g., 
[20]). The electric field (E) is the sum of two 
counter-propagating fields (A and B): 

( ) ( ) ( ) ( ) ( ) ( )ziezBzzAz
dz

zdA Γ+= κα                   (1) 

( ) ( ) ( ) ( ) ( ) ( )ziezAzzBz
dz

zdB Γ−+−= κα                  (2) (2) 

where A(z) is the amplitude of the forward-
propagating field, B(z) is the amplitude of the 
backward-propagating field, represents 
the envelope of the forward-propagating field, 

( ) )(ziezA Γ−

( ) )( ziezB Γ  represents the envelope of the back-
ward-propagating field, α(z) is the field gain, 

( )zκ is the coupling coefficient while Γ (z) is the 
spatial phase factor or coefficient. A schematic 
representation of coupled-mode procedure or 
method, used for numerical evaluation of DFB-
FL structure is presented in Fig. 8. 

 
Fig. 8 Schematic representation of coupled-mode pro-

cedure/method 



Designating by α (z) the net field gain in-
cluding the background loss and φ (z) the Bragg 
grating phase, the spatial phase factor/coefficient 
Γ (z) will be given by this equation, where β is 
the unperturbed waveguide mode: 

( ) ( ) ( )zzz φβ −=Γ 2                                           (3)  (3) 
The equation defining the Bragg grating phase 

φ (z) is: 

( ) ( )
*

0
*

2 dz
z

z
z

∫ Λ
=

πφ                                              (4) (4) 

where Λ (z) represents the local grating period. 
The average signal intensity definition is: 

( ) ( ) ( )zBzAzS 22 +=                                         (5) 
While the definition of the intensity difference 
between the  counter-propagating fields is: 

( ) ( ) ( )zBzAzD 22 −=                                       (6) 
The intensity difference D(z) can be expressed 

as: 

( ) ( ) ( ) ( ) **

0

*20 dzzSzDzD
z

⋅+= ∫α                     (7) 

The standard coupled-mode propagation equa-
tions for counter-propagating fields are can be 
manipulated to provide expressions for k(z), the 
coupling coefficient of the electromagnetic field: 

( )
( ) ( ) ( )

( )( ) ( ) ( )zDzSz

zzD
z
zdS

zk
22cos

2
−Γ

−
=

α
                   (8) 

The usual DFB laser boundary conditions are: 
( ) ( ) 00 == LBA                                             (9) 
The new/transformed DFB laser boundary 

conditions are: 
( ) ( )
( ) ( ) ( )LSLALD

BD
==

=−=
2

2 000
                                     (10) 

These boundary conditions represent the basis 
of our design method. Given S(z), α(z) and Λ(z), 
we can use them to find D(z) and then the re-
quired coupling coefficient distribution can be 
calculated: 

( ) ( ) ( )( zznnzn )φcos0 ⋅Δ+=                            (11) 
The coupling coefficient defines the amount of 

the periodic perturbation required. If this pertur-
bation is sinusoidal the varying refractive-index 
modulation in the form is defined by the above 
equation. n0 is the effective refractive index and 
Δn is the modulation amplitude. 

The reflection coefficient of a grating with 
constant gain at the Bragg wavelength is: 

( )
( ) ( )LL

Lr
γαγγ

γκ
sinhcosh

sinh
⋅−⋅

⋅−
=             (12) 

Here γ coefficient is 22 ακγ += .  
The approximation of reflection coefficient of 

a grating with constant gain at the Bragg wave-
length is given by ( )Lr κtanh−≈ . 

The necessary condition for the validation of 
the above equation is α « κ. 

The reflectivity of the Bragg grating is equal 
to the reflectivity of a passive grating with no 
gain: 

( )LrR κ22 tanh≈=                                         (13) 
Due to the distributed nature of the reflection 

process in gratings, the incident wave penetrates 
into the grating before reemerging at the front 
end. It refers to the case of the case of constant 
gain and at the Bragg wavelength: 
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In the case of a phase-shifted DFB laser, the 
total length of effective cavity in which the fields 
are circulating is: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+≈+=

2

2

1

1
21 22 κκ

rr
DDLeff                (15) 

D1 and D2 are the penetration depths into the 
Bragg grating segments on the left-hand side and 
on the right-hand side of the phase shift, respec-
tively. In the case of a uniform refractive index 
profile, the coupling coefficient is constant. 

A mode propagating on a straight fiber or 
waveguide fabricated from non-absorbing, non-
scattering materials will in principle propagate 
indefinitely without any loss of power. However, 
if a bend is introduced, the translational invari-
ance is broken and power is lost from the mode 
as it propagates into, along and out of the bend. 
This applies to the fundamental mode in the case 
of single-mode fibers.  

Two types of optic fiber bend losses can be 
considered [20 - 22]: 

• Transition loss is associated with the abrupt 
or rapid change in curvature at the beginning and 
the end of a bend; 

• Pure bend loss is associated with the loss 
from the bend of constant curvature in between 
the optic fiber.  



The transition loss can be described by an 
abrupt change in the curvature k from the 
straight waveguide (k ~ 0) to that of the bent 
waveguide of constant radius Rb (k = 1/Rb). The 
fundamental-mode field is shifted slightly out-
wards in the plane of the bend, thereby causing a 
miss-match with the field of the straight 
waveguide, as presented in Fig. 9. 

The fractional loss in fundamental-mode 
power, δP/P, can be calculated from the overlap 
integral between the fields. Within the Gaussian 
approximation to the fundamental mode field 
and assuming that the spot size s and core radius 
or half-width ρ are approximately equal, where V 
is the fiber or waveguide parameter and D is the 
relative index difference this gives: 

2

2

2

4

16
1

bR
V

P
P ρδ

⋅
Δ

⋅≈                                           (16) 

Minimizing transition loss can be achieved by 
considering a number of techniques for signifi-
cantly reducing transition loss. In Fig. 9 this can 
be seen as being equivalent to displacing the bent 
core downwards so that the two fundamental-
mode fields overlap. Alternatively, if a gradual 
increase in curvature is introduced between the 
straight and uniformly bent sections, the funda-
mental field of the straight waveguide will 
evolve approximately adiabatically into the off-
set field of the uniformly bent section. 

The pure bent loss is defined by the funda-
mental mode continuously optical power loses 
when propagating along the curved path of the 
core of constant radius Rb. It is assumed that the 
cladding is essentially unbounded and not af-
fected by the fiber optic bent, keeping a constant 
cladding refractive index value, ncl. The radiation 
loss increases rapidly with decreasing bend ra-
dius and occurs predominantly in the plane of the 
bend; in any other plane the effective bend radius 
is larger and hence the loss is very much re-
duced, as presented in Fig. 10.  

 
Fig. 9 Outward shift in the fundamental-mode electric 
field on entering a bend  

 
Fig. 10 Schematic of the bending effect of a fiber laser  

It has to be observed that the phase velocity 
any where on the modal phase front rotating 
around the bend cannot exceed the speed of light 
in the cladding. Hence, beyond radius Rrad the 
modal field must necessarily radiate into the 
cladding, the radiation being emitted tangen-
tially. The interface between the guided portion 
of the modal field around the bend and the radi-
ated portion at Rrad is known as the radiation 
caustic, and it is the apparent origin of radiation. 
Rrad can be defined by the equation: 

cl
rad n

CR
⋅Ω

=                                                   (17) 

The present theoretical analysis is developed 
by considering step-index optical fibers (with a 
step profile of the refractive index). In terms of 
the core and cladding modal parameters U and 
W, respectively, relative index difference Δ, core 
radius ρ, fiber parameter V and the bending ra-
dius Rb, an approximate expression for γ for the 
fundamental mode of a step-index fiber has the 
form [20 - 22]:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ−= 2

3

2

2

3
4exp

2 V
WR

U
WV

R
b

b ρρ
πργ               (18) 

where Rb is necessarily large compared to ρ be-
cause it is not possible to bend a fiber into a ra-
dius much below 10 mm without breakage. The 
pure bend loss coefficient is most sensitive to the 
expression inside the exponent because Rb and ρ. 
Loss decreases very rapidly with increasing val-
ues of Rb or Δ or V (since W also increases with 
V), and becomes arbitrarily small as Rb tends to 
infinity. 

 
6. Numerical Simulation Results 
 

Two numerical simulation procedures were 
used: 

• one relaying on SCILAB software package, 
based on the above mentioned equations; 



• the second one relaying on COMSOL soft-
ware packages.  

Numerical simulations were performed for 
optical fiber with and without doping with er-
bium ions (Er3+). No significant differences were 
observed for doped or undoped optical fibers. 
The numerical simulations were performed using 
1.550 µm as the laser wavelength. 

In the first stage, transition loss was simu-
lated. Using (16) relative input power variation 
was calculated as: 

2

2

2

4

16 b
rel R

VP ρ
⋅

Δ⋅
= (19) 

where ρ = 5 µm is the core radius, Rb = 5 mm is 
the radius of curvature, while Δ – relative index 
difference and V – modal parameter are calcu-
lated as it follows: 

2

22

core

cladcore

n
nn −

=Δ (20) 

222
cladcore nnV −

⋅
=

λ
ρπ (21) 

ncore = 1.4457 is the refractive index of the 
core, with a diameter of 10 µm, nclad = 1.4378 is 
the refractive index of the cladding with an ex-
ternal diameter of 80 µm, while λ = 1.55 µm 
denotes the wavelength. Fig. 16 illustrates the 
variation of relative input power Prel vs. radius of 
curvature Rb. 
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Fig. 16 Relative input power vs. radius of curvature 
The numerical simulation performed using 

COMSOL Multiphysics is aiming to obtain an 
insight on the laser intensity distribution across 
the transverse section of the optic fiber. The op-
tion 2D was used for the Space Dimension. 
Then the RF Module -> Perpendicular Waves 
-> Hybrid-Mode Waves -> Mode analysis op-
tions was used. The geometry of the transverse 
optical fiber cross section was developed consid-
ering realistic parameters. Elliptical deformation 
of the optical fiber was considered in order to 

resemble the bend.  

 
Fig. 17 The numerical simulated time averaged laser 
power flow across the transverse section of a single 
mode optical fiber with a core of 10 μm diameter and 
a cladding of an overall 80 μm diameter. 

 
Fig. 18 The numerical simulated time averaged laser 
electric field distribution into the transverse section of 
a singlemode optical fiber with a core of 10 μm di-
ameter and a cladding of an overall 80 μm diameter 
 

 
Fig. 19 The numerical simulated time averaged laser 
power flow across the transverse section of a single 
mode optical fiber with a core of 8.82 μm, 11.33 μm 
axes and a cladding of 70.59 μm, 90.67 μm axes. 



 
Fig. 20 The numerical simulated time averaged laser 
electric field distribution into the transverse section of 
a singlemode optical fiber with a core of 8.82 μm and 
11.33 μm axes and a cladding of 70.59 μm and 90.67 
μm axes 

 
The procedure tried during numerical simula-

tion consists in considering the laser beam 
propagation along the bending such as the opti-
cal fiber appears as of an elliptical cross section.  
 
7. Conclusions 
 

In this paper we have demonstrated the ver-
satility of COMSOL Multiphysics regarding the 
modeling and simulation of DFB-FL sensor 
bending deformation. 

The obtained COMSOL Multiphysics models 
are under development for fulfillment of aero-
nautic industry design needs. The considered 
development includes comparison with experi-
mental results. 
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