Single Crystal Diamond NEMS Switch

Meiyong Liao Optical and Electronic Materials Unit National Institute for Materials Science, Japan

待機電力消費---半導体スイッチ

機器が非使用状態、若しくは何らかの入力(命令指示)待ちの時に定常的に消費している電力

待機時消費電力量の占める割合

▶普段の生活のエネルギー消費を減らす必要!

✓ナノマシンスイチ:省エネルギー技術(ゼロ)として期待。

MEMS switch: Merits

MEMS switch

Advantages over semiconductor devices

But, poor reliability due to

OFF state

Surface stiction (i)(ii) Mechanical abrasion

ON state

Diamond MEMS: route toward high reliability and high performance

Challenges and Strategies in Diamond MEMS

What process....?

What device concept.....?

Difficulties

Batch fabrication of single crystal diamond MEMS structures.
 Lack of device concepts compatible with the fabrication process.

Aims

Establish unique process for diamond MEMS structures.
 Develop high-performance diamond MEMS/NEMS devices.
 Create novel device concepts.

Strategies

No direct deposition of diamond on sacrificial layers.
Diamond-on-Diamond lateral device concept.

Diamond growth

MPCVD

Parameters:

Gas: H_2 (500 sccm), CH_4 (0.4 sccm) RF Power: 400 W Pressure: 80 Torr Sub. Tem: 900-950°C [B]:1000 ppm 10^{20} cm⁻³ Substrate: Ib (100)---100 ppm nitrogen Thickness: 0.1-0.5µm

Batch production of micro-scale M/NEMS structures

M. Y. Liao, et al, Advanced Materials 22, 5393 (2010)

M. Y. Liao, et al, J. Micromech. Mircoeng. 20, 085002 (2010)

Quality of the MEMS/NEMS structure

Nanoindentation of MEMS structures

Young's modulus: 800±200 GPa (Calibrated by Si cantilever)

M. Y. Liao, et al, J. Micromech. Mircoeng. 20, 085002 (2010)

Nanoelectromechanical switch: 2-terminal

Nanoelectromechanical switch: 3-terminal

3-T NEMS switch: Reliability

100Hz AC V_G

High temperature operation

Modeling and simulation of NEMS switch

$$-\nabla \cdot (\varepsilon \nabla \mathbf{V}) = \mathbf{0}$$

Potential in the air around the beam

$$\mathbf{F}_{es} = -\frac{1}{2} (\mathbf{E} \cdot \mathbf{D}) \mathbf{n} + (\mathbf{n} \cdot \mathbf{E}) \mathbf{D}^{\mathrm{T}}$$

F_{es}: Electrostatic force density of the beam E: electric field, D: displacement vector

$$V_{\text{pull-in}} = \sqrt{\frac{4c_1 B}{\epsilon_0 L^4 c_2^2 (1 + c_3 \frac{g}{W})}}$$

Pull-in voltage: defined as the beam contact to the gate. L: length, W: width, t: thickness

 $B=E_0t^3g^3$

Modeling and simulation of NEMS switch

Comparison between experiment and simulation:

Applications of diamond M/NEMS Switch: H⁴

For the first time

Single-crystal diamond NEMS switch was fabricated.

> Batch production of SCD MEMS/NEMS structures were developed.

The diamond NEMS switches exhibit high performance.
 (1) High controllability .
 (2) High reproducibility.
 (3) Good reliability.

Modeling and simulation were made and were consistent with experiments