

A Model of Electric Field Assisted Capillarity for the Fabrication of Hollow Microstructures

C. Tonry^{1*}, M. Patel¹, C. Bailey¹, M.P.Y. Desmuliez², S. Cargill², W. Yu³

¹Computational Mechanics and Reliability Group (CMRG), School of Computing and Mathematical Sciences

²Microsystems Engineering Centre (MISEC), School of Engineering & Physical Sciences, Heriot-Watt University

³State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine mechanics and Physics, Chinese Academy of Sciences

Contents

- What is Electric Field Assisted Capillarity(EFAC)?
- Forces
- The Model
 - Interfacial force
 - Geometry
 - Mesh and Material Properties
 - Viscosity

- Results
 - Contact Angle
 - Electric Field
 - Air Gap
 - Comparison to experiment
- Conclusions
- Further Work
- Further Information

- A process which patterns polymers using electric fields
- Polymers must be semimolten
- Initially surface driven by electric field
- When the polymer reaches the top mask Capillary force becomes dominant
- This causes the polymer to coat the top mask forming a hollow microstructure

Forces

Electrostatic and Dielectric Forces

- These are the dominant force at the start of the process
- They are concentrated around the polymer/air interface
- It is proportional to the square of the electric field

Capillary Force

- This becomes dominant when the polymer reaches the top mask
- As this is due to surface tension it again is concentrated around the air/polymer interface
- This is due to the small contact angle (20-30° for PDMS and the mask)

The Model

- Process is modelled using the Lamina Phase Field and Electrostatics modules in COMSOL 4.0/4.2
- The Lamina Phase field module describes the motion of the fluid using Navier-Stokes and the surface using a Diffuse Interface Phase Field model

- The phase field module calculates the surface tension forces
- The Electrostatics module solves for the voltage and calculates electric field from this
- This electric field is then used to calculate the interfacial force due to the electric field

Interfacial Force

- The charge density at the surface is represented by $\sigma = (\epsilon_r - 1)\epsilon_0 \mathbf{E} \cdot \hat{\mathbf{n}}$
- This is derived from the surface charge density in terms of the polarisation:

 $\sigma = \mathbf{P} \cdot \widehat{\mathbf{n}}$

• And the Polarisation in terms of the electric field $\mathbf{P} = (\epsilon_r - 1)\epsilon_0 \mathbf{E}$ This equation is then combined with the expression for electrostatic force:

$$\mathbf{F} = \rho_f \mathbf{E} - \frac{1}{2} \mathbf{E} \cdot \mathbf{E} \nabla \epsilon + \nabla \epsilon + \nabla \epsilon \mathbf{E} \nabla \epsilon \mathbf$$

• To give an expression for the force per unit area at the interface:

$$\mathbf{F} = ((\epsilon_r - 1)\epsilon_0 \mathbf{E} \cdot \nabla \phi)\mathbf{E} - \frac{1}{2}\mathbf{E}$$
$$\cdot \mathbf{E}\nabla \epsilon + \nabla(\frac{1}{2}\mathbf{E} \cdot \mathbf{E}\frac{\partial \epsilon}{\partial \rho}\rho$$

Geometry and Boundary Conditions

	Flow	Electric Field	
1	Slip Wall	Symmetry	100 - 13 14
2	No-Slip Wall	0V	90 -
3	Slip wall	Symmetry	80 -
5	Slip wall	300V	70 -
6	Wetted Wall	N/A	60 - 5 18 /7
7	Wetted Wall	N/A	50 - 3 Airgap 6 16
12	Wetted Wall	300V	40 -
13	Wetted Wall	300V	30 -
14	Wetted Wall	300V	20 -
15	Symmetry	Symmetry	
16	Symmetry	Symmetry	PDMS
17	Symmetry	Symmetry	
18	N/A	300V	

Mesh and Material properties

- Triangular Elements are used in the top part of the mask
- Mapped Quads are used in the lower part

• Material Properties

HERIO

Viscosity

- To reduce simulation time a lower viscosity has been used
- These animations compare a 250 cp case to a 1000 cp case
- The final thickness is the same only the simulation time is different

Effect of Contact Angle

• Increasing Contact angle Decreases Cap Thickness

• This is probably due to the reduced capillary force

Electric Field

- Electric field at the surface (white line) is higher under the lower part of the mask
- This is what causes the surface to move

Large Air Gap

- Increasing the Air Gap creates a deeper channel for the same amount of polymer
- Using a wetted surface at the bottom results in a square bottomed channel

Comparison with Experiment

Angled Channel 15° contact Angle Swept to form a 3D representation

Conclusions

- The model presented here has provided some further avenues for further investigation
- The main one of these in terms of reliability is contact angle which should be alterable by changing the mask properties
- Further work is needed to develop a model including higher viscosities and also incorporating a Oldroyd-B model of the viscoelasticity, to see if this has an effect on the shape of the structures

Thank You

Any Questions?

Contact Angle

Viscosity

Viscosity – Difference from 1Pa·s

HERIOT

