Politecnico di Bari

Dipartimento di Scienze dell'Ingegneria Civile e dell'Architettura

An Innovative solution for Water Bottling Using PET

D. Scardigno, A. Castellano, P. Foti,

A. Fraddosio, S. Marzano, M.D. Piccioni

The idea

To pressurize PET bottles in order to balance an external axial load and to reduce the amount of utilized PET.

Two conditions:

- 1) The bottle must not exceed the elastic limit of PET.
- 2) The geometry must not reach the geometric instability (buckling).

Main Physical Phenomenon

The deformed geometry depends on the applied forces, that is on the external load and the inner pressure of fluids (water and air).

Since the bottle is a closed system, the contained matter is constant. The pressure of fluids depends on the free volume and consequently on the deformed shape of the bottle.

Implicit System

Geometry and meshes

Generic geometry Height 190 mm Diameter 67 mm

Mesh of surface 23 thousand triangles

Mesh of volume: 76 thousand tetrahedra

Mathematical models

Solid phase:

SHELL MODULE

With geometric nonlinearities

d=0,167 mm D=67 mm

d/D=2,5*10⁻³ <<1

Fluid phases:

MOVING MESH MODULE

SHELL Module

MOVING MESH Module

- Since water is incompressible, a change in its pressure does not affect its volume.
- As a consequence, the volume taken by the air is equal to the difference between the deformed shape of the bottle and the volume of the water.
- The volume of the bottle is evaluated by means of a "probe" defined as the integral of the unit over the volumetric mesh.
- The relative pressure of air is linked to the volume of the bottle by the following relationship:

$$p = pi * \left(\frac{V_{i,gas}}{V_{bottle} - V_{water}}\right)^{1,4}$$

MOVING MESH Module

Solver

Results (without load)

Von Mises stresses [Pa]

Displacement field, axial component [m]

Results (with load)

Von Mises stresses [Pa]

Displacement field, axial component [m]

Results (buckling)

Surface: Displacement field, Z component (m) Surface Deformation: Displacement field (Material)

A test case: analytical solution

Diameter r₀=1 m Thickness s=1 mm

p_{int,0}= 6 bar

pe= 3 bar

E = 200 GPa

v = 0.29

$$r_i = r_0 + \frac{(p_{int,i} - p_e) * r_0^2}{2Es} (1 - v)$$

$$p_{int,i} = p_{int,1} * \left(\frac{V_1}{V_i}\right)^{\gamma}$$

ri-r₀=0,53487 mm p_{int,i}=601366 Pa

A test case: numerical solution

37000 tetrahedra

Any questions?