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Abstract: Numerical models based on the Finite 

Element Method (FEM) are frequently used to 

evaluate the safety conditions of large concrete 

structures. In the last year, the elastic behavior of 

the Microplane Model was implemented in 

COMSOL because it is considered a promising 

approach able to overcome those limits typical of 

the classical approaches, which can in general 

simulate only a few specific characteristics of 

concrete, but not the overall behavior. The basic 

idea of the Microplane Model is related to the 

observation that the main mechanical phenomena 

of concrete take place on planes whose 

orientation depends on load and material 

conditions. 

This paper deals with the review of the linear 

behavior where some remarks are needed and a 

description of the implementation process within 

COMSOL of the non-linear behavior of the 

Microplane Model, based on the definition of 

boundary surfaces. In order to verify this part, 

some tests are presented as well. 
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1. Introduction 
 

In the last European COMSOL Conference, 

held in Stuttgart (Germany) in 2011, [1], the 

philosophy governing the theory the Microplane 

Model is based on and a detailed description of 

the process followed to implement its elastic 

behavior within COMSOL were presented. 

This paper focuses on the further advances 

from that condition being the formulation of the 

non-linear behavior of the Microplane Model, 

[2]÷[9], as well as its implementation within 

COMSOL introduced and described in detail. 

First, some remarks regarding how the linear 

behavior of the Microplane Model works within 

COMSOL are provided to allow a correct use. 

 

2. The linear behavior: some remarks 
 

2.1 Some hints on the elastic behavior 

 

It is worth briefly recalling the different 

logical scheme that characterizes the elastic 

behavior of the Microplane Model with respect 

to that of classical approaches. 

As a convention and consistently with the 

previous work, in this paper the subscript N 

stands for the component of the strain/stress 

vectors that are normal to microplanes, while M 

and L are referred to the tangential components. 

 

 

Figure 1. The logical scheme of the elastic behavior 

of the microplane model (in blue) compared with that 

of classical approaches (in orange). 

 

Considering the scheme in Figure 1, three 

steps characterize the elastic behavior of the 

Microplane Model: 

1. considering each material point, the strain 

vector is computed projecting the strain 

tensor εij on each microplane k, that is 

applying the kinematic constraint: 

 

jij

k

i
nεε =  (1) 

 

being nj the unit vector components normal to 

the microplane k; 

2. the stress vectors are computed by means of 

the elastic incremental relations of the 

Microplane Model in the rate form: 
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where EV, ED and ET are the microplane 

elastic moduli; 

3. the macroscopic stress tensor σij is calculated 

applying the principle of virtual work written 

with reference to the surface Ω of a unit 



 

 

hemisphere whose center is the material 

point: 
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where Nij, Mij and Lij are tensors, [1]; 

 

The integral over the surface Ω represents an 

integration that considers an infinite number of 

microplanes but, as its solution is not a trivial 

matter, Gaussian quadrature formulas of various 

degrees of approximation are adopted: 
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In this work, 28 microplanes are considered 

for each material point (Figure 2) as this choice 

is deemed a good arrangement between an 

accurate solution of the integration formula and 

the computational cost of the overall method in 

terms of time and numerical resources. 

 

 
Figure 2. Unit vector components normal to the 28 

microplanes assumed in the hemisphere of a material 

point 

 

2.2 Choice of the Finite Element shape 

 

Last year, the accuracy of the implementation 

process of the linear elastic behavior of the 

Microplane Model was verified taking into 

consideration a schematic geometry of a concrete 

gravity dam, where the dead weight of the 

structure as well as the hydrostatic pressure of 

the reservoir were applied [1]. The field of 

stresses provided by this static analysis was 

qualitatively in good agreement with that 

computed applying a conventional linear elastic 

model, anyway a slight difference was detected 

in the peak values. 

This discrepancy was thoroughly investigated 

and, finally, it was find out that the problem was 

not related to the implementation process rather 

to the choice of the finite element shape. In the 

Solid Mechanics module, the displacement field 

of each finite element is described by quadratic 

shape functions but, in each PDE module, it is 

the strain field that has to be characterized by 

each finite element, thus the use of linear shape 

functions is required. By the light of this need, in 

addition to the fact that COMSOL adopts a 

Lagrangian formulation for shape functions, if 

the mesh is generated by means of brick finite 

elements, the mechanical deformation fields 

becomes incongruent with respect to that defined 

into the PDE modules. This incongruence does 

not happen if tetrahedral finite elements are 

used. To better understand, let’s consider 2D 

linear and quadratic finite elements, whose shape 

functions have as many polynomial terms as the 

number of nodes of the finite element (Figure 3). 

 

 

 
Figure 3. Pascal triangle to define the polynomial 

terms of finite elements shape functions for a squared 

and triangle 2D finite element, linear and quadratic 

 

The deformation field, obtained deriving the 

polynomial quadratic shape function of the 

displacement field of a squared finite element, 

has some polynomial terms that are not present 



 

 

in the related linear shape function of the 

deformation field of the squared finite element of 

the PDE modules. Making reference to Figure 3, 

you might assessed that this does not occur 

anymore in case triangle 2D element are used: 
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The mesh of the concrete gravity dam was 

therefore modified as shown in Figure 4. The use 

of tetrahedral finite elements allows verifying the 

correctness of the implementation process of the 

linear behavior of the Microplane Model. 

 

 
Figure 4. The tetrahedral finite elements used to 

discretize a schematized concrete gravity dam 
 

3. The non-linear behavior 
 

The non-linear behavior of the Microplane 

Model is defined by imposing stress-strain 

boundaries at the microplane level, [2]÷[9]. 

These boundaries may be regarded as strain-

dependent yield limits which can exhibit strain 

softening. Exceeding these boundaries is never 

allowed whereas, within the domain they mark 

out, the material response is incrementally 

elastic. Movements along these boundaries are 

permitted only if strain and stress increments are 

of the same sign, otherwise elastic unloading 

occurs. Damage may be modeled as well by 

progressively reducing the elastic moduli of the 

incremental laws within the elastic domain. 

In order to characterize these boundaries, 17 

constant material parameters, denoted as c1, c2... 

c17, and 4 free parameters, denoted as k1, k2, k3, 

k4, are used. The former parameters may be 

taken fixed for all the types of concrete whereas 

the latter ones may be adjusted to differentiate 

various concretes. The identification of free 

parameters can be carried out fitting test data. In 

this paper, the values reported in Table 1 and 

Table 2 are assumed respectively for the constant 

and free parameters. 

 
Table 1: Constant material parameters 

 

c1 0.62 c10 0.73 

c2 2.76 c11 0.20 

c3 4.00 c12 7000.00 

c4 70.00 c13 0.20 

c5 2.50 c14 0.50 

c6 1.30 c15 0.02 

c7 50.00 c16 0.01 

c8 8.00 c17 0.40 

c9 1.30   

 
Table 2: Free material parameters 

 

k1 0.000245 k3 12 

k2 110 k4 38 

 

The free values in Table 2 are representative 

of a concrete which may attain an uniaxial 

compression strength of 46 MPa, the axial 

normal strain at peak stress equal to 0.0036, and 

an elastic modulus of 25 GPa. 

Making reference to the Model Builder 

window of COMSOL, all these parameters are 

placed within the Global Definitions node. 

In the next paragraphs, the boundaries are 

briefly described. The normal, volumetric, and 

deviatoric components of the stress boundary can 

be assumed to be dependent only on their 

conjugate strains at the microplane level. 

Nevertheless, the macroscopic response is well 

captured thanks to the interactions occurring 

among microplanes according to the applied 

kinematic constraints, and thanks to the fact that 

different microplanes can enter the unloading or 

reloading phase at different times. 

 

3.1 Tensile normal boundary 

 

The tensile normal boundary is given as: 
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where subscript b refers to the stress at the 

boundary. Macaulay brackets stand for: 

<Value> = Max(Value,0). 
 

 
Figure 5. Tensile normal boundary 

 
In particular, this functions is able to define 

also the horizontal segment of the boundary, 

representing yield limit, as shown in Figure 5. 

Physically, the initial descending part of this 

boundary describes the tensile cracking parallel 

to the microplane, whereas its tail defines the 

frictional pullout of fragments bridging the crack 

surfaces. 

 

3.2 Volumetric boundaries 
 

The volumetric boundaries are given as: 
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Figure 6. Volumetric boundary in compression 

 

The inelastic behavior under hydrostatic 

pressure, as well as uniaxial compressive strain, 

do not exhibit strain softening, but it 

progressively shows stronger hardening caused 

primarily by collapse and closure of pores 

(Figure 6). 
 

 
Figure 7. Volumetric boundary in tension 

 

A tensile volumetric boundary is needed too 

as the normal tensile boundary alone cannot 

prevent unreasonable lateral strains in post peak 

softening under uniaxial, unconfined, tension 

(Figure 7). 

 

3.3 Deviatoric boundaries 

 

The deviatoric boundaries are given as: 
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Figure 8. Deviatoric boundaries 

 

The compressive deviatoric boundary 

controls the axial crushing strain of concrete in 

compression when lateral confinement is too 

weak to prevent crushing; instead, the tensile 

deviatoric boundary simulates the transverse 

crack opening of axial distributed cracks in 

compression and controls the volumetric 

expansion and lateral strains in unconfined 

compression tests (Figure 8). 



 

 

 

3.4 Frictional yield boundary 

 

The frictional yield boundary is given as: 
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being: 
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The initial slope of the boundary, close to the 

origin, is as follows: 
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As the compressive stress magnitude 

increases, it approaches a horizontal asymptote: 
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The existence of a horizontal asymptote 

means that, at very high confining pressures, 

concrete becomes a plastic but frictionless 

material, the friction being characterized by the 

boundary slope at yield, which tends to zero 

(Figure 9). When the volumetric strain is small, 

this boundary provides a finite cohesive stress, 

which decreases to zero with increasing 

volumetric strain (Figure 10). 

 

 
Figure 9. Frictional yield boundary 

 

4. Implementation of the non-linear 

behavior of the Microplane Model within 

COMSOL 

 

Considering all the boundaries defined in the 

previous paragraph, the implementation process 

will be outlined. 

All the following boundaries are defined 

within the Global Definitions node of the Model 

Builder window, into the "SigmaN" set, [1]. 

 

4.1 Tensile normal boundary 

 

First, some notes on the meaningful names 

assigned to each variables are needed: 

• sNbkk: tensile normal boundary on the kk 

microplane related to the current normal 

strain; 

• eNkkint: current normal strain; 

• sVkk: volumetric stress vector on the kk 

microplane computed by means of the 

incremental constitutive law; 

• sNkk: current tensile stress on the kk 

microplane imposed equal to sNbkk if a 

greater value is obtained applying the 

constitutive law; 

• sVkk: current volumetric stress on the kk 

microplane; 

• sDkk: current deviatoric stress on the kk 

microplane. 

Considering the conventional names of the 

variables, this boundary was implemented as 

follows: 

 

sNbkk =  

Young*k1*c1*exp(-max(eNkkint+ 

-c1*c2*k1,0.)/(k1*c3+ 

+max(-c4*(sVckk/EV),0.))) 

 

sNkk =  

(eNkkint<=0)*min(sNbkk,sVckk+sDckk)+ 

+(eNkkint>0)*(sVckk+sDckk>0)* 

*min(sNbkk,sVckk+sDckk) 

 

In order to validate these formula, a tensile 

load was applied on one face of a concrete cube 

with one meter long edge. 

The tensile normal boundaries related to the 

first 7 microplanes are diagrammed in Figure 10.  

 



 

 

 
Figure 10. Tensile normal boundaries on the first 7 

microplanes computed by COMSOL 

 

4.2 Volumetric boundaries 

 

The conventional names here used are as 

follows: 

• sVbkkn: negative volumetric stress boundary 

on the kk microplane related to the current 

volumetric strain; 

• sVbkkp: positive volumetric stress boundary 

on the kk microplane related to the current 

volumetric strain; 

• eVkkint: current volumetric strain; 

• sVckk: current volumetric stress imposed 

equal to sVbkkn or sVbkkp if a greater 

absolute value is obtained applying the 

constitutive law; 

 

Considering the conventional names of the 

variables, these boundaries were implemented as 

follows: 

 

sVbkkn = -Young*k1*k3* 

*exp(-eVkkint/(k1*k4)) 

 

sVbkkp =  Young*k1*c13/(1+(c14/k1)* 

*max(eVkkint-k1*c13,0.))^2 

 

sVckk  = 

(sVkk>=0)*min(sVbkkp,sVkk)+(sVkk<0)*

*max(sVbkkn,sVkk) 

 

As in the previous case, these formula were 

verified considering a uniaxial tensile test on a 

concrete cube. Results in terms of volumetric 

stress boundaries are shown in Figure 11. 

 

 
Figure 11. Volumetric stress boundaries on the first 7 

microplanes computed by COMSOL 

 

4.3 Deviatoric boundaries 

 

The conventional names here used are as 

follows: 

• sDbkkn: negative deviatoric stress boundary 

on the kk microplane related to the current 

deviatoric strain; 

• sDbkkp: positive deviatoric stress boundary 

on the kk microplane related to the current 

deviatoric strain; 

• eDkkint: current deviatoric strain; 

• sDckk: current deviatoric stress imposed 

equal to sDbkkn or sDbkkp if a greater 

absolute value is obtained applying the 

constitutive law. 

 

Considering the conventional names of the 

variables, these boundaries were implemented as 

follows: 

 

sDbkkn = -Young*k1*c8/(1+ 

+(max(-eDkkint+ 

-c8*c9*k1,0.)/(k1*c7))^2) 

 

sDbkkp =  

Young*k1*c5/(1+(max(eDkkint+ 

-c5*c6*k1,0.)/(k1*c17*c7))^2) 

 

sDckk =  

(sDkk>=0)*min(sDbkkp,sDkk)+(sDkk<0)*

*max(sDbkkn,sDkk) 

 

Once again, these formula were verified 

considering a uniaxial tensile test on a concrete 

cube, and results in terms of deviatoric stress 

boundaries are shown in Figure 12. 

 



 

 

 
Figure 12. Deviatoric stress boundaries on the first 7 

microplanes computed by COMSOL 

 

4.4 Frictional yield boundary 

 

The conventional names used are as follows: 

• sNTbkk: frictional yield stress boundary on 

the kk microplane related to the volumetric 

strain; 

• sTbkk: frictional yield stress boundary on the 

kk microplane; 

• sTkk: current frictional yield stress 

obtained applying the constitutive law. 

 
Considering the conventional names of the 

variables, this boundary was implemented as 

follows: 
 

sNTkk = 

ET*k1*c11/(1+c12*max(eVkkint,0.)) 

 

sTbkk = ET*k1*k2*c10* 

*max(-sNkk+sNTkk,0.)/(ET*k1*k2+c10* 

*max(-sNkk+sNTkk,0.)) 

 

sTkk  =(sMkk^2+sLkk^2)^0.5 

 

sMckk = 

if(sTkk>sTbkk,sMkk*sTbkk/sTkk,sMkk) 

 

sLckk = 

if(sTkk>sTbkk,sLkk*sTbkk/sTkk,sLkk) 

 

5. Conclusions 
 

In this paper some noted are provided in 

order to allow a correct used of the Microplane 

Model implemented in COMSOL. 

A detailed description of the implementation 

process followed to implement the non-linear 

behavior of this model is here addressed. Some 

examples showing a correct representations of 

the boundaries that delimited the linear elastic 

domain are provided. More complex tests are 

under investigation as they need a proper 

calibration of the parameters of the Microplane 

Model in order to represent realistically the 

mechanical behavior of concrete. 
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