2013年12月6日 COMSOL Conference Tokyo

有機物の分解挙動を考慮した 廃棄物埋立地の安定化シミュレーション

石森洋行

立命館大学 理工学部・環境システム工学科 (国立環境研究所 客員研究員)

研究目的

廃棄物の減量化やリサイクルが積極的に推進されているが、 廃棄物をゼロにすることは不可能であり、どうしても有効利 用できないものは、最終処分場に埋立処分せざるを得ない。

準好気性埋立とは、わが国の標準的な埋立方式であり、(1) 水環境への負荷軽減、(2)ガスの排出に伴う問題を防止し、 (3)埋立地管理期間の短縮といった優位性は認められている ものの、その効果を確実に得るための設計・管理に関する根 拠が乏しく、理論的な裏付けが必要である。

本報告では、廃棄物から発生するCH₄や CO₂ガス、廃棄物の分解に必要なO₂ガス の動態を調べ、準好気性埋立地の性能評 価に資する計算モデルを紹介する。

● 廃棄物の分解が完了するまでの時間 → 維持管理期間
● CH_4 や CO_2 放出量 → 温室効果ガス放出量の抑制効果
● なによりも、共通の考え方で評価できる

期待される成果

・ 埋立物の種類や量の違い
・ 降雨量・気温の違い
を共通の枠組みで評価できる
その地域に応じた処分場を!!!

廃棄物分解・ガス発生/消費

● 分解性有機物

	い [。] ラメータ	単位	值	
求解	W_{doc}	mg-C/kg-wst	初期值 0.01	
	W_{doc}^{ar}	mg-C/kg-wst	初期值 O	
	$W_{doc}{}^{an}$	mg-C/kg-wst	初期值O	
好気分解	K _I *		0.180	
	η _e		1	
	k*	1/yr	2.0	
嫌気分解	KI		0.143	
	η _n		1	
	k	1/yr	0.2	
酸素消費	R _{O2,max}	g-O ₂ /g-C/yr	5.3	
	K _w		?	
	K _{wO2}		?	

酸素消費量

準好気埋立地の安定化挙動解析

● 目的

埋立構造の違いで、酸素供給量や安定化速度は変わるか?

- 一断面二次元、非定常計算
- ー気<mark>液</mark>二相流、四成分ガス輸送、<mark>廃棄物分解</mark>モデル

計算条件

	密度 (kg/m³)	粘性 (Ps*s)	拡散率 (m²/s)	比熱 (J/kg/K)	熱伝導率 (W/m/K)
純CH4	状態方程式	サザ゛ーラント゛		双曲線近似	多項式近似
純 CO2	状態方程式	ササ゛ーラント゛	ChapEnskog (相互拡散係数 を求める)	双曲線近似	多項式近似
純 O2	状態方程式	ササ゛ーラント゛		双曲線近似	多項式近似
純N2	状態方程式	ササ゛ーラント゛		双曲線近似	多項式近似
混合	状態方程式	Wilke	(名称不明)	加重平均	(名称不明)

試算結果(非定常)

酸素侵入深さと有機物量の時間変化

埋立層への酸素供給速度は、埋立地の構造のみならず、 廃棄物の分解特性にも左右される。Sub1との連携により、 廃棄物の性状に応じた性能評価が可能となった。