Niobate
equency
J. Retz,
OMSOL ONFERENCE 14 BOSTON

Introduction/Overview

- Quantum Communication (e.g. Quantum Key Distribution)
- Requires Single-Photon Sources and Detectors
 - These work best at wavelengths around 800 nm
- Requires Low-Loss Transmission Over Optical Fiber
 - Works best around 1550 nm
- Need to Convert Between Wavelengths While Preserving Quantum State

10/09/2014

Phase Matching

• For a frequency conversion process to occur efficiently, momentum must be conserved

$$\frac{\mathbf{n}_1}{\lambda_1} = \frac{\mathbf{n}_2}{\lambda_2} + \frac{\mathbf{n}_3}{\lambda_2}$$

- Dispersion means that n₁, n₂ and n₃ are likely to be different
- In bulk crystals, angle phase matching is used; but in waveguides...

Quasi-Phase Matching

• Periodically reverse the nonlinear optical coefficient by inverting the crystal axis

10/09/2014

D'Auria, et al., Proc. SPIE 8172 (2011)

Momentum conservation condition becomes

$$\frac{n_1}{\lambda_1} - \frac{n_2}{\lambda_2} - \frac{n_3}{\lambda_3} = \frac{1}{\Pi}$$

Diffused Waveguide Modeling in Comsol

• Diffusion Step 1: Proton Exchange

10/09/2014

- Diffusion Step 2: Annealing
- Diffusion Step 3: Reverse Proton Exchange

$$D_e(T) = D_{0e}e^{-Q/RT}$$

Diffused Waveguide Modeling in Comsol **Optical Mode Computation** (a) λ_1 Assumes $\Delta n = \alpha C$ $(a) \lambda_2$ **Fundamental** mode AIR W

10 µm

LiNbO₃

10/09/2014

Higher-order mode

SHG Peak Wavelength vs. QPM Period: Model & Measurements

10/09/2014

Measured SHG Spectrum

Conclusions

- Comsol Multiphysics was used to simulate a multi-step diffusion process for waveguide
- fabrication and compute the corresponding optical modes
 - Good agreement with experiment was achieved with one fitting parameter

