# FEM Correlation and Shock Analysis of a VNC MEMS Mirror Segment

Ed Aguayo / Newton, LLC

COMSOL CONFERENCE 2014 BOSTON



#### Introduction

- Segmented MEMS Mirror used for corrective optics
  - Correct wavefront error
  - Octagon segments
- New, developing technology
  - Never used in spaceflight before
- Mechanical Analysis to:
  - Understand limitations of design
  - Provide input to increase reliability
  - Demonstrate space worthiness







#### Geometry

- Mirror Segment "glued" to platform
- Platform made of several material layers
  - Three flexure beams
  - Different pre-stresses on each material layer





#### **Process**

Incremental model correlation

- Single layer cantilever Beam
- Multi-layer cantilever beam
- Platform
- Static Loading
- Sine vibration
- Perform Shock Analysis
  - Synthesize time history
  - Apply load



## Single Layer Cantilever Beam

- Simplified flexure beam
- Single material layer
  - Stress gradient
  - Modeled as three sublayers





### **Single Layer Cantilever Beam Results**





www.TheNewtonCorp.com

#### **Multi-Layer Cantilever Beam**

- Simplified flexure beam
- Multiple material layers
  - Different pre-stresses
  - Stress gradients modeled with sub-layers as in previous analysis





### **Single Layer Cantilever Beam Results**





#### **Platform**

Full Platform
Multiple material layers
Study effects of removing geometric details
Mesh refinement study





#### **Platform Results**

Surface: Total displacement (µm)



**1**25.8

25

5

▼0

| 20 |             | Location [um] |      | Displacement [um] |          |
|----|-------------|---------------|------|-------------------|----------|
|    | Point<br>ID | X             | У    | As-<br>Measured   | Analysis |
| 15 | 1           | 261           | 158  | 25.87             | 24.31    |
|    | 2           | -266          | 147  | 24.95             | 24.15    |
| 10 | 3           | 5.9           | -305 | 26.05             | 24.83    |



#### **Dynamics**

#### • Verify stiffness and damping

- Fn = 2470 Hz
- Q = 2 at first mode









### **Shock Analysis**

#### Synthesized SRS





www.TheNewtonCorp.com

### **Shock Results**

Time=0 s Surface: von Mises stress (N/m<sup>2</sup>)



## **Shock Results - Displacement**





#### **Shock Results - Stresses**





#### Conclusion

COMSOL is being used to guide the design of a MEMS Mirror

- Material and dynamic properties have been correlated
- Model can be used to predict behavior in various spaceflight environments
- Future analysis and correlation will be performed as further tests are performed
  - Vibroacoustics
  - Random vibration

