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Abstract: Two-phase laminar flow and turbulent flow 

problems may be modeled in COMSOL MP by using 

the level-set method.  For laminar flow problems, we 

discuss how to extend this capability to problems with 

more than two fluids.  We also introduce an alternate 

method of solving multiphase flow problems that does 

not use a level-set function. This method does not 

currently include the effects of surface tension. 
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1. Introduction 

The COMSOL Multiphysics Fluid Flow module has a 

Laminar Two-Phase Flow interface for solving 

problems with the Level Set method.1 Building upon 

the capabilities of a Navier-Stokes solver, this 

interface notably allows the solution of problems in 

which the fluid regions undergo changes in topology, 

(e.g. when they divide or coalesce) and in which 

account must be taken of interfacial tension and 

contact angles at the boundaries. 

This is a powerful modeling tool, but in its native form 

it is designed for use with just two fluids.  In this paper 

we discuss how the tool may be extended for use in 

problems having more than two fluids, provided that 

the flow is laminar.  We then introduce a second 

method capable of solving such problems, but for 

which no method of including the effects of surface 

tension has yet been formulated. 

2. Level Set Method 

The Level Set interface makes use of a smooth 

auxiliary function 𝜉(𝑟, 𝑡) that goes from 0 to 1, and has 

a 𝜉 = 0.5 level set that divides the model geometry 

into regions containing each of the two fluid phases.   

For example, at any time t, the regions containing fluid 

#1 are those with 𝜉(𝑟, 𝑡) ≤ 0.5, and those containing 

fluid #2 are those with 𝜉(𝑟, 𝑡) > 0.5.  At time t=0, the 

user provides the solver with an original configuration 

of the fluids, in the form of a set of boundaries that 

initially separate the fluids, and a specification of 

which domains contain each of the fluids.  From this 

information, the solver carries out an initialization step 

in which it produces a starting Level Set function 

𝜉(𝑟, 𝑡0) that has 𝜉 = 0.5 on the identified boundaries 

and that correctly identifies the fluids in each domain.  

As the simulation proceeds, the Navier-Stokes 

equation is used to compute fluid motion, and a 

differential equation is applied to 𝜉(𝑟, 𝑡) so that its 𝜉 =

0.5 level set properly tracks the coordinates of the 

interfacial boundaries.   Knowing that the value of 

𝜉 must remain 0.5 at the interfacial boundaries, it 

would appear that a suitable PDE for 𝜉(𝑟, 𝑡) might be: 

𝑑𝜉(𝑟, 𝑡)

𝑑𝑡
= 0  →    𝑢⃗⃗ ⋅ ∇𝜉 +

𝜕𝜉

𝜕𝑡
= 0 

This equation moves the level set contours at the local 

velocity 𝑢⃗⃗ of the fluid.  In practice, this equation is 

found to result in “roughening” of the interfacial 

boundaries as they propagate. Steps are therefore 

taken to “reinitialize” 𝜉, periodically restoring the 

norm of its gradient at the level-set contour.  

“Initialization-free” schemes2, 3 have been developed. 

COMSOL MP implements a conservative level-set 

method with a modified equation for the auxiliary 

function: 4 

𝜕𝜉

𝜕𝑡
+ ∇𝜉 ⋅ 𝑢⃗⃗ = 𝛾∇ ⋅ (𝜖∇𝜉 − 𝜉(1 − 𝜉) (

∇𝜉

|∇𝜉|
)). 

This equation governs both the propagation and the 

reinitialization of 𝜉.  The two parameters 𝛾 and 𝜖 set 

scales for the interface velocity and sharpness 

There are occasions on which it would be convenient 

to extend the Level Set method to work with three or 

more fluids.  We propose an edifice for doing so using 

multiple instances of the 2-fluid Level Set interface.  

Each interface will correspond to one of the 𝑁 ≥ 3 

fluids but, as we shall see, one of the fluids will not 

need its own interface.  Therefore, we use N-1 

instances of the Level Set interface in total. 

3. Example Problem 

As an example, we consider an axially-symmetric 

example in which two droplets of fluid are suspended 

in a third background fluid (see Fig. 1).5   There are 

𝑁 = 3 fluids in all, and we shall use N-1=2 copies of 
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the Level Set interface.  One of the interfaces 

corresponds to the fluid of droplet #1, and the other to 

the fluid of droplet #2.   The remaining fluid does not 

have an interface.  Each Level Set interface has an 

associated auxiliary function 𝜉𝑗(𝑟, 𝑡),   1 ≤ 𝑗 ≤ (𝑁 −

1), the values of which establish the boundaries of the 

corresponding fluid j.  In the present example, there 

are two auxiliary functions 𝜉1(𝑟, 𝑡) and 𝜉2(𝑟, 𝑡) that 

track droplets #1 and #2, respectively. 

Note that, in general, it is not the number of droplets 

that is relevant, but the number of distinct fluids.  We 

could have, for example, ten droplets composed of 

fluid 1 and five droplets composed of fluid 2, and we 

would still require just two Level set interfaces. 

                     

  

Fig. 1:  Test problem involving three fluids.  Two dissimilar 

droplets are suspended in a third fluid. 

In each of the Level Set interfaces j, two fluids are 

modeled.   The first is the fluid j tracked by the 

auxiliary function 𝜉𝑗(𝑟, 𝑡) of that interface.  The other 

is a composite fluid, made up of all of the other fluids.  

Since we are restricting our attention to the case of 

laminar flow, the fluids do not mix, and we can express 

the density 𝜌 and viscosity 𝜈 of the composite fluid as: 

𝜌 = 𝜌0 + ∑(𝜌𝑘 − 𝜌0) ⋅ (𝜉𝑘(𝑟, 𝑡) > 0.5)

𝑘≠𝑗

 

𝜈 = 𝜈0 + ∑(𝜈𝑘 − 𝜈0) ⋅ (𝜉𝑘(𝑟, 𝑡) > 0.5)

𝑘≠𝑗

 

In this way, the fluid properties necessary to mutually 

solve each of the N-1 Level Set problems become fully 

defined. 

More specifically, in the example problem with three 

fluids, we have a background fluid with density 𝜌0 and 

viscosity  𝜈0, and we have N-1=2 Level Set interfaces.    

The first interface models droplet #1 with 

properties 𝜌1, 𝜈1 that is suspended in a composite fluid 

having: 

𝜌 = 𝜌0 + (𝜌2 − 𝜌0) ⋅ (𝜉2(𝑟, 𝑡) > 0.5) 

𝜈 = 𝜈0 + (𝜈2 − 𝜈0) ⋅ (𝜉2(𝑟, 𝑡) > 0.5) 

The second interface models droplet #2 with 

properties 𝜌2, 𝜈2 that is suspended in a composite fluid 

with: 

𝜌 = 𝜌0 + (𝜌1 − 𝜌0) ⋅ (𝜉1(𝑟, 𝑡) > 0.5) 

𝜈 = 𝜈0 + (𝜈1 − 𝜈0) ⋅ (𝜉1(𝑟, 𝑡) > 0.5) 

It is the auxiliary functions 𝜉1(𝑟, 𝑡) and 𝜉2(𝑟, 𝑡) that 

couple the two interfaces. 

Fig. 2 shows an example solution in which the system 

was begun in the configuration of Fig. 1.  All three 

fluids have a viscosity of 100 mPa-s.  The background 

fluid has a density of 𝜌0 = 1 g/𝑐𝑚3, the lower fluid 

drop a density (𝜌1 = 0.6 g/𝑐𝑚3) and the upper fluid 

drop a density (𝜌2=0.8 g/𝑐𝑚3).  In the course of the 

simulation, the lower drop rises more quickly than the 

upper drop, and overtakes it.  The upper drop then 

wraps around the lower drop as shown. 

 

 

Fig. 2:  Solution at t=0.3 sec for a Level Set test problem 

with three fluids 

𝜌 = 𝜌0 

 

𝜌 = 𝜌1 

𝜌 = 𝜌2 
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4. Dilute Species Method 

An interesting aspect of this simulation is that each 

auxiliary function “travels with” one of the fluids and 

maintains the knowledge of where its boundaries are. 

There are, in fact, other means of carrying out this role 

without using a Level Set interface. 

One might, for example, use the analogy of a chemical 

tracer incorporated into each fluid type.  As long as the 

flow is laminar, the fluids do not mix.  Therefore, if 

the diffusion constant is made sufficiently small, the 

tracers will not travel from fluid-to-fluid.  In that case, 

the tracers travel with their respective fluids and can 

be used to detect which fluid type exists at each 

physical location.   

In this case, the model is built around a Transport of 

Dilute Species interface with N-1 species having 

concentrations 𝑐𝑗.   

The geometry defines regions for the starting 

disposition of each of the N fluid types as before, and 

for N-1 of the fluid types, we assign one of the dilute 

species as a tracer.  The tracers are initialized with unit 

concentration 𝑐𝑗 = 1 [
𝑀

𝑚3] in regions initially 

composed of the 𝑗𝑡ℎ fluid type and 𝑐𝑗 = 0 [
𝑀

𝑚3] in all 

other regions.   One of the fluid types (j=0) is 

distinguished by the fact that all of the tracer 

concentrations are zero.   

The next step is to implement a Navier Stokes Laminar 

Flow interface for a single fluid, the properties of 

which depend on the local concentration of dilute 

species.  

𝜌(𝑟, 𝑡) = 𝜌0 + ∑(𝜌𝑘 − 𝜌0) ⋅ (𝑐𝑘 > 0.5 [
𝑀

𝑚3
])

𝑁−1

𝑘=1

 

𝜈(𝑟, 𝑡) = 𝜈0 + ∑(𝜈𝑘 − 𝜈0) ⋅ (𝑐𝑘 > 0.5 [
𝑀

𝑚3
])

𝑁−1

𝑘=1

 

The solution then proceeds as it did when using the 

Level Set interfaces.  Fig. 3 shows the result of the 

same test problem that was shown in Fig. 2, but this 

time solved by using the “Dilute Species” method.  

The result is clearly quite similar. 

 

Fig. 3:  Solution at t=0.3 sec of a Dilute Species version of 

the same problem shown in Fig. 2. 

 

The principle reason for using COMSOL Level Set 

interfaces rather than this alternate scheme is that the 

Level Set interface implements surface tension.  It is 

computed from the auxiliary function 𝜉 by using 𝑝 =

𝛾∇ ⋅ 𝑛⃗⃗ , where 𝛾 is the surface tension and 𝑛⃗⃗ is the 

surface normal  𝑛⃗⃗⃗ ⃗ = ∇𝜉/|∇𝜉|.  Smoothed versions of 

the dilute species concentrations 𝑐𝑘 could, in principle, 

also be used to formulate an expression for the surface 

tension, but to date a procedure has not been 

formulated and tested. Thus, we currently use the 

Dilute Species formulation for qualitative work, or 

when we believe the surface tension to be a secondary 

consideration. 

5. Conclusions 

We have demonstrated two methods of solving 

laminar multiphase fluid-dynamic problems with more 

than two fluids.  One builds on the capabilities of the 

COMSOL Level Set interface, and the other uses the 

COMSOL Transport of Dilute Species interface. The 

Dilute Species method is quick to set up, and has been 

useful to check the Level Set solution when the surface 

tension is zero.  However, the use of multiple level-set 

interfaces is recommended when the surface tension is 

an important consideration. 
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