COMSOL CONFERENCE 2015 PUNE

MULTIPHYSICS BASED ELECTRICAL DISCHARGE MODELING

ELECTRIC DISCHARGE MACHINING

- Electric Discharge
 Machining (EDM) is an
 electro-thermal non traditional machining
 Process.
- It uses electrical energy to generate electrical spark.
- o The electric spark is used to remove material due to thermal energy of the spark

NUMERICAL MODELING

• COMSOL 5.0 is used in modeling the EDM process.

 Partial differential equation is used to model the heat transfer process from plasma channel to the workpiece

- Heat conduction from the plasma to the work
 piece is modeled using partial differential
 equations governed by Fourier and Non Fourier
 conduction process.
- ${\rm \circ}$ A step pulse of flux (order $10^9~W/m^2)$ is applied on the workpiece to model the T_{on} and T_{off} cycle of the wire EDM
- Variable heat capacity of the work piece is taken into consideration.

FOURIER HEAT CONDUCTION MODEL

FOURIER HEAT CONDUCTION

Governing Equation

$$\rho C p \frac{\partial T}{\partial t} + \rho C u. \nabla T = \nabla . (k \nabla T) + Q$$

Boundary conditions

$$k \frac{\partial T}{\partial y}(x, 0, t) = q$$

 $k \frac{\partial T}{\partial x} + h[T - T_{\infty}] = 0$ at all boundaries in contact of water

Initial condition

$$T(x, y, 0) = T_{\infty}$$

Where ρ , C_p , q, T, t, Q, k, u, h are density, heat capacity, heat flux(pulsed), Temperature ,time, Internal energy, Thermal conductivity, velocity vector ,heat transfer coefficient respectively T_{∞} = 273.16K

Temperature distribution on work piece surface at 130 µsec (Fourier model)

Temperature distribution on work piece surface at 130 µsec (Non Fourier Model)

Spatial Temperature variation on the workpiece (Fourier model)

Temperature variation at the point of Flux application

NON FOURIER HEAT CONDUCTION

Governing Equation

$$\frac{\tau}{\alpha} \frac{\partial^2 T}{\partial t_2} + \frac{1}{\alpha} \frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial x_2}$$

Boundary conditions

$$k\frac{\partial T}{\partial y}(x,0,t)=q$$
 $k\frac{\partial T}{\partial x}+h[T-T_{\infty}]=0$ at all boundaries in contact of water

Initial condition

$$T(x, y, 0) = T_{\infty}$$
$$\frac{\partial T}{\partial t}(x, y, 0) = 0$$

Where τ , α , q, h, T, t are Thermal relaxation time, thermal diffusivity flux , heat transfer coefficient , temperature ,time respectively

$$T_{\infty} = 273.16$$
K

Spatial Temperature variation on the workpiece (Non-Fourier model)

Comparison of Fourier and Non Fourier Model Temperature Distribution

EXPERIMENTAL OBSERVATIONS

- The temperature is measured by K-Type thermocouples.(Chromel-Alumel)
- Eurotherm recorder is used to record the output of thermocouples.

Plasma temperature measurement by Optical Emission Spectroscopy

Principle

Results of Optical Emission Spectroscopy on P-91

Spectra of Wire EDM Plasma Channel With P-91 cutting

A standard method of spectroscopy
'Line Pair Method' is used to estimate the temperature of the Plasma

Plasma Temperature Estimation from results of Spectroscopy

$$T = \frac{E_m - E_i}{k} \left(ln \frac{A_{mn} \cdot g_m \cdot \lambda_i \cdot I_i}{A_{ij} \cdot g_i \cdot \lambda_m I_m} \right)^{-1}$$

- Where λ_i is the wavelength of the light emitted from the plasma species due to transition from energy level i to j.
- I_i is the radiant intensity of emitted light of wavelength λ_i
- g_i is the statistical weight of energy level i

Temperature at different point on the workpiece

Tool wire = Zinc coated Brass
Work piece material = P-91
Voltage = 150V
Current = 1.5 A
Cutting speed =0.75mm/min
Flushing Pressure=4 kg/cm²
Tool wire Diameter = 0.25mm

Distance from the line of Cutting (mm)	Temperature (K) at 0.005sec
1	303
2	296
3	295
3.5	294

Thank you