

Influence of Notches in Corners of Casement Windows under Thermal Load

- 1. Introduction
- 2. Task 1: Pre-Investigation
- 3. Task 2: Main-Investigation
- 4. Conclusion

Schüco

- Leading suppliers of high-quality <u>window</u>, door and facade systems made from aluminium,
 PVC-U and steel
- Head office is in Bielefeld (Germany)
- International presence in more than 80 countries
- 4,630 employees worldwide

The Casement Window

<u>Problem</u>: The difference in temperature causes a deflection in the corner of the profile

Deflection of an extruded one-meter profile

- $\Delta T = 60 K$
- Glued connection between the insulating bar and the profiles
- Linear-elastic material model
- Analytical result (comparison)

Deflection of a profile in a corner

- $\Delta T = 60 K$
- Notches on the insulating bar for the following lengths (x)
 - 60 mm
 - 100 mm
 - 150 mm
 - 200 mm
- Aluminum profiles deform elastic-plastic
- Comparison: Glued and contact case

- 1. Introduction
- 2. Task 1: Pre-Investigation
 - ConstraintsMeshPre-processing
 - Results ——— Post-processing
 - Analytical result with a simplified model
- 3. Task 2: Main-Investigation
- 4. Conclusion

Constraints

Heat Transfer in Solids

- Temperature
- Continuity

Solid Mechanics

- Prescribed displacement
- Symmetry
- Continuity

Mesh

<u>1. Step</u>

- Cut front face
 - > Partition with objects or work planes
- Virtual operations (ignore edges, vertices)

2. Step

- Mesh the front face
 - ➤ Mapped and triangular elements
- Extrude the mesh

Results (Simulation)

Maximum deflection = 2.73 mm

Analytical Result Of A Simplified Model (Rectangular Profile)

Deflection:
$$w_{(\Delta T)} = R - x = \frac{h}{\alpha_{th} * \Delta T} * (1 - \cos\left(\frac{L * \alpha_{th} * \Delta T}{h * 2}\right)) = 2.15 mm$$

- 1. Introduction
- 2. Task 1: Pre-Investigation
- 3. Task 2: Main-Investigation
 - Material Model
 - Constraints
 - Mesh
 - Solver
 - Results ———— Post-processing

Pre-processing

4. Conclusion

Material Model

Aluminum: elastic-plastic

Bilinear material

- 2. Yield Point
- 3. Breaking stress

$$E_t = \frac{R_m - R_{p0,2}}{\varepsilon_B - \frac{R_{p0,2}}{E}}$$

Constraints

Heat Transfer in Solids

- Temperature
- Continuity

Solid Mechanics

- Prescribed displacement
- Symmetry
- Continuity (identity pair) or contact (contact pair)

Contact Pair

1. Form assembly:

Identifies the touching, adjacent, boundaries of all objects

2. Selection

 Source boundary stiffness is higher than the destination boundary stiffness

3. Mesh

 Source boundary has to be finer than destination boundary (twice)

4. Friction (assumed value μ =0.2)

Stationary Solver

- Modify physics tree
- Segregated
 - 1. Temperature: Constant Newton
 - 2. Displacement: Constant Newton
- Continuation solver for contact pair

Results (Deflection)

Displacement field, X component (mm)

<u>Identity pair case</u>

Length of notches (mm)	Deflection (mm)
0	9,86
60	9,82
100	9,56
150	9,26
200	8,94

Reduced deflection ≈ 1 mm

Contact pair case

Length of notches (mm)	Deflection (mm)
0	6,86
60	4,96
100	3,83
150	2,74
200	1,72

Reduced deflection ≈ 5 mm

- 1. Introduction
- 2. Task 1: Pre-Investigation
- 3. Task 2: Main-Investigation
- 4. Conclusion

Conclusion

Pre-Investigation

- In spite of simplifications in the analytics there is a good approach to the simulation
- The influence of air cavities is not significant

Main-Investigation

- Confirmation that notches reduce the deflection
 - Glued pair case: Notches don't reduce the deflection significantly
 - Contact pair case is more suitable
- The length of notches has to be limited
 - By increasing the length of notches, the stiffness reduces

Next step: Comparison with a real experiment

Contact/References

Contact

Jemai.arfaoui@fh-bielefeld.de

Lars.fromme@fh-bielefeld.de

References

- 1. Schüco homepage: https://www.schueco.com/web2/de-en/company/about-schueco/company-profile
- 2. COMSOL homepage: https://www.comsol.com/support/knowledgebase/1102/