Full Simulative Approach to OAM Transmissions between Antenna Arrays

A. Cagliero¹, A. De Vita², R. Gaffoglio¹ and B. Sacco²

University of Torino, Department of Physics, Via Pietro Giuria 1, I-10125 Torino, Italy;
 RAI Radiotelevisione Italiana, Centre for Research and Technological Innovation,
 Via Giovanni Carlo Cavalli 6, I-10128 Torino, Italy

OAM beams:

waves carrying
Orbital Angular
Momentum (OAM),
characterized by a
doughnut-shaped
intensity profile and

Fig. 1 Intensity and phase

an azimuthal phase variation of $2\pi |\ell|$.

Such beams can be generated using a N-element Uniform Circular Array (UCA) with a progressive phase shift: $2\pi\ell/N$.

Fig. 2 OAM Radiation Pattern

COMSOL model: COMSOL allowed us to model an OAM communication link and proved to be an essential support for the experimental implementation of a multimode transmission scheme between UCAs [1].

Fig. 3 Communication link

d d

40 m is simulated in a unique model.

A transmission link of

First approach:

- High memory cost
- Indicated for nearfield transmissions

Second approach: The TY and the F

The TX and the RX stages are treated separately, *i.e.* the TX far-field is provided as a background field to the RX model.

- Faster computation
- Far-field scenarios

TX RX

Fig. 4 Electric field norm

Results: The OAM link budget can be estimated in Comsol by:

$$\frac{P_{out}}{P_{in}} = \frac{\left| \frac{1}{\sqrt{N}} \sum_{p=1}^{N} \Phi_p^{-\ell} V_{port}^p \right|^2}{\sum_{n=1}^{N} |V_n^{\ell}|^2}$$
(1)

- V_n^{ℓ} : input OAM voltage to the *n*th TX radiator;
- V_{port}^p : voltage on the pth RX port (post-processing);
- $\Phi_p^{-\ell}$: RX OAM phase-weighting

Formula (1) as a function of the RX array rotation angle α shows an on-axis power maximum [2] and fits very well the experimental results:

Fig. 5 OAM-link pattern ($\ell = 1$)

Table 1. Link budget comparison

Link budget (dB)	$\ell = 0$	$\ell = 1$
Friis equation Comsol simulation Experiment		- -42.96 -42.99

Conclusions: Comsol proved to be a very efficient tool for our preliminary investigations and led to reliable results in good agreement with the experiment.

References:

- 1. R. Gaffoglio *et al.*, "OAM multiple transmission using uniform circular arrays: numerical modeling and experimental verification with two digital television signals", *Radio Science* **51**, 645-658 (2016).
- 2. A. Cagliero *et al.*, "A New Approach to the Link Budget Concept for an OAM Communication Link", *IEEE Antennas and Wireless Propagation Letters* **15**, 568-571 (2016).