Modeling and simulation of photoelectrochemical hydrogen production

P. Cendula and J. O. Schumacher

Comsol Conference, Munich, 13th Oct 2016

Photoelectrochemical (PEC) water-splitting

- Light absorption generates electrons and holes which are separated by the electrical field in space-charge region (SCR)
- Holes oxidize water to oxygen at semiconductor

$$4OH^- + 4h^+ \rightleftharpoons 2H_2O + O_2$$

 Electrons (via external wire) reduce water to hydrogen at counterelectrode (CE)

$$4H_2O + 4e^- \rightleftharpoons 2H_2 + 4OH^-$$

 Hydroxyl ions diffuse from CE to semiconductor

Why tandem PEC devices are needed

- So far, no semiconductor material satisfies all energetic/stability requirements for both oxidation and reduction reactions
- Various options to overcome this limitation and achieve unassisted water splitting^{1,2}
- Tandem requires well-matched bandgaps of two semiconductors, PEC/PV, PEC/PEC

Abdi, Nat.Comm. 4, 2195 (2013)

¹Prevot et al., JPCC 117, 17879 (2013)

²Nielander et al., 10.1039/c4ee02251c

Photoelectrochemical (PEC) water-splitting

- Benchmark PEC cells reached a hydrogen production efficiency of 12.4% with GaAs¹, recently 12.3% with perovskites²
- The current challenge is to fabricate them economically -> metal oxide semiconductors (Fe₂O₃, Cu₂O)
- To become economically viable, 10% solar-to-hydrogen (STH) efficiency³ and long-term stability needs to be achieved

Figure: Courtesy LPI EPFL.

O2 Platinum wire
H2
Copper exide

¹Khaselev et al., Science 280, 425 (1998)

²Luo et al., Science 345, 1593 (2014)

³Pinaud et al., Energy Environ. Sci. 6, (2013)

Charge transport model in 1D semiconductor

• Poisson's eq for electrostatic potential ϕ , electron and hole continuity eqs for their concentrations n, p

$$\frac{d^2\phi}{dx^2} = -\frac{q(N_D - n(x) + p(x))}{\varepsilon_0\varepsilon_r},$$
 (1)

$$\frac{\partial n}{\partial t} = +\frac{1}{q} \frac{\partial j_e}{\partial x} + G_e(x) - R_e(x), \qquad (2)$$

$$\frac{\partial p}{\partial t} = -\frac{1}{q} \frac{\partial j_h}{\partial x} + G_h(x) - R_h(x), \tag{3}$$

where N_D is donor density in n-type semiconductor, vacuum and relative permitivity is ε_0 , ε_r , electronic charge is g.

Lambert-Beer generation for 1 sun illumination AM15G

$$G_{e} = G_{h} = \int_{\lambda_{min}}^{\lambda_{g}} lpha(\lambda) \Phi_{AM15G}(\lambda) e^{-lpha(\lambda) X} d\lambda.$$

• SRH recombination $R_e = R_h$ with trap level at intrinsic level, hole SRH lifetime is t_h

Charge transport model in 1D semiconductor

Drift-diffusion equations for current densities

$$j_{e} = +q\mu_{e}V_{th}\frac{\partial n}{\partial x} - e\mu_{e}n\frac{\partial \phi}{\partial x},$$
 $j_{h} = -q\mu_{h}V_{th}\frac{\partial p}{\partial x} - e\mu_{h}p\frac{\partial \phi}{\partial x},$

where charge mobilities are denoted μ_e , μ_h and $V_{th} = 0.026$ V is thermal voltage.

• Variables solved for n, p, ϕ in Semiconductor Module

Boundary conditions

 Potential at semiconductor/liquid junction is implemented with Schottky barrier (height changes with applied voltage) model and band edge pinning (tricky)

$$\phi(0) = const \tag{4}$$

Ohmic back-contact is assumed

$$\phi(d) = V_a. \tag{5}$$

Hole current

$$j_h(0) = -q \frac{k_{trh}(p(0) - p_{dark})}{f_h(d)},$$

$$j_h(d) = -q r_s(p(d) - p_{dark}).$$

Electron current

$$j_e(0) = 0,$$

 $j_e(d) = +q r_s(n(d) - n_{dark}).$

Stationary results @ 1.2 V

 Fe₂O₃ photoanode material parameters used, however many parameter uncertainties exist!

Stationary results @ 1.2 V

- Numerical IV curve does not perfectly reproduce the experimental IV => our set of model assumptions and material parameters needs to be altered
- IV response couples all kinetic effects inside one response curve => reducing the parameter uncertainty is not unambiguous

Frequency-domain perturbation study

- **1** Stationary solution n^{dc} , p^{dc} , ϕ^{dc} is calculated
- 2 Harmonic perturbation in voltage $V_a(t) = V_a + V^{ac}e^{i\omega t}$ causes harmonic perturbation in variables => linearization

$$p(t,x) = p^{dc}(x) + p^{ac}(x)e^{i\omega t},...$$

3 Differential equations for perturbed variables

$$i\omega p^{ac} = -rac{1}{q}rac{\partial j_h^{ac}}{\partial x} - R_h^{ac}, \dots$$

- 4 Numerical solution and calculation of impedance $Z = \frac{V^{ac}}{i^{ac}}$
- 5 Framework is general and can be used for many spectroscopic/transient techniques

Impedance in the dark (Mott-Schottky)

- Frequency is fixed and applied voltage V_a is increased
- The Mott-Schottky theory approximates the impedance by series connection of resistor and space-charge capacitance C_{sc} , thus implying $\frac{A^2}{C_{sc}^2} = \frac{2V_{sc}}{e\varepsilon_r\varepsilon_0N_D}$.
- From Comsol solution, we obtain capacitance as $C_{sc}^{-2} = \omega^2 \text{imag}(Z)^2$.

Photoelectrochemical impedance

• We investigated the dependence of real (R_1) and imaginary (I_1) part of lowest frequency impedance on parameters k_{trh} and t_h

Extraction of rate constant and hole lifetime

- The linear relation between R_1 and k_{trh} , as well as between R_1 and t_h is obtained from simulations
- => parameter extraction from comparison of measured and simulated impedance data

Heterojunction devices

- Additional layers provide chemical stability, photovoltage or charge selectivity
- TiO₂/Cu₂O photocathode: how band offset (deltaEc) between semiconductor layers changes photocurrent onset potential

Summary and Outlook

- Numerical drift-diffusion calculations of the photoelectrochemical impedance
- Extraction of these two parameters from the comparison of slope of measured and simulated data
- Detail validation of the model with measured data for hematite is challenging due to uncertainties in values of material parameters/processes => further investigations of recombination and charge transfer kinetics needed

Thank you for attention!

Hematite (α -Fe₂O₃) parameters

Symbol	Value	Description
рН	14	pH value
V_{fb}	+0.5 V vs. RHE	Flatband potential
N_D	$2.9 \cdot 10^{18} \text{ cm}^{-3}$	Donor concentration
N_C	$4 \cdot 10^{22} \text{ cm}^{-3}$	Density of states of conduction band
N_V	$1 \cdot 10^{22} \ \text{cm}^{-3}$	Density of states of valence band
ε_{r}	32	Relative permittivity
E_g	2.2 eV	Bandgap energy
ď	33 nm	Thickness of semiconductor
<i>I</i> ₀	1000 Wm ⁻²	Illumination power density
$ au_h$	48 ps	Hole lifetime
L_h	5 nm	Hole diffusion length
α	1.5 · 10 ⁷ m ⁻¹	Absorption coefficient