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Photoelectrochemical (PEC) water-splitting

• Light absorption generates electrons and
holes which are separated by the electrical
field in space-charge region (SCR)

• Holes oxidize water to oxygen at
semiconductor

4OH− + 4h+ � 2H2O + O2

• Electrons (via external wire) reduce water
to hydrogen at counterelectrode (CE)

4H2O + 4e− � 2H2 + 4OH−

• Hydroxyl ions diffuse from CE to
semiconductor

Institute of Computational Physics, ZHAW, Switzerland Cendula Peter, cend@zhaw.ch



40 60 80 100 120 140 160

40

60

80

mm

Why tandem PEC devices are needed

• So far, no semiconductor material satisfies
all energetic/stability requirements for both
oxidation and reduction reactions

• Various options to overcome this limitation
and achieve unassisted water splitting1,2

• Tandem - requires well-matched
bandgaps of two semiconductors,
PEC/PV, PEC/PEC

1Prevot et al., JPCC 117, 17879 (2013)
2Nielander et al., 10.1039/c4ee02251c

Abdi, Nat.Comm. 4, 2195 (2013)
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Photoelectrochemical (PEC) water-splitting

• Benchmark PEC cells reached a hydrogen
production efficiency of 12.4% with
GaAs1, recently 12.3% with perovskites 2

• The current challenge is to fabricate them
economically -> metal oxide
semiconductors (Fe2O3, Cu2O)

• To become economically viable, 10%
solar-to-hydrogen (STH) efficiency3 and
long-term stability needs to be achieved

1Khaselev et al., Science 280, 425 (1998)
2Luo et al., Science 345, 1593 (2014)
3Pinaud et al., Energy Environ. Sci. 6, (2013)

Figure: Courtesy LPI EPFL.
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Charge transport model in 1D semiconductor
• Poisson’s eq for electrostatic potential φ, electron and hole continuity eqs for their

concentrations n,p

d2φ

dx2 = −q(ND − n(x) + p(x))

ε0εr
, (1)

∂n
∂t

= +
1
q
∂je
∂x

+ Ge(x) − Re(x), (2)

∂p
∂t

= −1
q
∂jh
∂x

+ Gh(x) − Rh(x), (3)

where ND is donor density in n-type semiconductor, vacuum and relative permitivity is
ε0, εr , electronic charge is q.

• Lambert-Beer generation for 1 sun illumination AM15G

Ge = Gh =

∫ λg

λmin

α(λ)ΦAM15G(λ)e−α(λ)xdλ.

• SRH recombination Re = Rh with trap level at intrinsic level, hole SRH lifetime is th
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Charge transport model in 1D semiconductor

• Drift-diffusion equations for current densities

je = +qµeVth
∂n
∂x

− eµen
∂φ

∂x
,

jh = −qµhVth
∂p
∂x

− eµhp
∂φ

∂x
,

where charge mobilities are denoted µe, µh and Vth = 0.026 V is thermal voltage.
• Variables solved for n,p, φ in Semiconductor Module
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Boundary conditions
• Potential at semiconductor/liquid junction is implemented with Schottky barrier (height

changes with applied voltage) model and band edge pinning (tricky)

φ(0) = const (4)

• Ohmic back-contact is assumed
φ(d) = Va. (5)

• Hole current

jh(0) = −q ktrh(p(0) − pdark ),

jh(d) = −q rs(p(d) − pdark ).

• Electron current

je(0) = 0,
je(d) = +q rs(n(d) − ndark ).
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Stationary results @ 1.2 V
• Fe2O3 photoanode material parameters used, however many parameter uncertainties

exist!
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Stationary results @ 1.2 V
• Numerical IV curve does not perfectly reproduce the experimental IV => our set of model

assumptions and material parameters needs to be altered
• IV response couples all kinetic effects inside one response curve => reducing the

parameter uncertainty is not unambiguous
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Frequency-domain perturbation study

1 Stationary solution ndc ,pdc , φdc is calculated
2 Harmonic perturbation in voltage Va(t) = Va + V aceiωt causes harmonic perturbation in

variables => linearization

p(t , x) = pdc(x) + pac(x)eiωt , ...

3 Differential equations for perturbed variables

iωpac = −1
q
∂jac

h
∂x

− Rac
h , ...

4 Numerical solution and calculation of impedance Z = V ac

jac

5 Framework is general and can be used for many spectroscopic/transient techniques
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Impedance in the dark (Mott-Schottky)
• Frequency is fixed and applied voltage Va is increased
• The Mott-Schottky theory approximates the impedance by series connection of resistor

and space-charge capacitance Csc , thus implying A2

C2
sc

= 2Vsc
eεrε0ND

.

• From Comsol solution, we obtain capacitance as C−2
sc = ω2imag(Z )2.
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Photoelectrochemical impedance
• We investigated the dependence of real (R1) and imaginary (I1) part of lowest frequency

impedance on parameters ktrh and th

R1

I1
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Extraction of rate constant and hole lifetime
• The linear relation between R1 and ktrh, as well as between R1 and th is obtained from

simulations
• => parameter extraction from comparison of measured and simulated impedance data
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Heterojunction devices
• Additional layers provide chemical stability, photovoltage or charge selectivity
• TiO2/Cu2O photocathode : how band offset (deltaEc) between semiconductor layers

changes photocurrent onset potential

Institute of Computational Physics, ZHAW, Switzerland Cendula Peter, cend@zhaw.ch
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Summary and Outlook

• Numerical drift-diffusion calculations of the photoelectrochemical impedance
• Extraction of these two parameters from the comparison of slope of measured and

simulated data
• Detail validation of the model with measured data for hematite is challenging due to

uncertainties in values of material parameters/processes => further investigations of
recombination and charge transfer kinetics needed

Thank you for attention!
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Hematite (α-Fe2O3) parameters

Symbol Value Description
pH 14 pH value
Vfb +0.5 V vs. RHE Flatband potential
ND 2.9 · 1018 cm−3 Donor concentration
NC 4 · 1022 cm−3 Density of states of conduction band
NV 1 · 1022 cm−3 Density of states of valence band
εr 32 Relative permittivity
Eg 2.2 eV Bandgap energy
d 33 nm Thickness of semiconductor
I0 1000 Wm−2 Illumination power density
τh 48 ps Hole lifetime
Lh 5 nm Hole diffusion length
α 1.5 · 107 m−1 Absorption coefficient
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