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Photoelectrochemical (PEC) water-splitting

o Light absorption generates electrons and
holes which are separated by the electrical
field in space-charge region (SCR) o — .

¢ Holes oxidize water to oxygen at
semiconductor

40H™ + 4ht = 2H,0 4 0,

Ef metal

e Electrons (via external wire) reduce water
to hydrogen at counterelectrode (CE)

Energy

Electrolyte

4H,0 +4e~ <= 2H, +40H™

o Hydroxyl ions diffuse from CE to
semiconductor
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Why tandem PEC devices are needed

e So far, no semiconductor material satisfies
all energetic/stability requirements for both
oxidation and reduction reactions

e Various options to overcome this limitation
and achieve unassisted water splitting'-?

e Tandem - requires well-matched b
bandgaps of two semiconductors, ciate
PEC/PV, PEC/PEC .
HO/0, | TTTITTITIIT H
"Prevot et al., JPCC 117, 17879 (2013) con (] [

2Nielander et al., 10.1039/c4ee02251¢

Metal  Semiconductor TCO Tunnel Back

cathode electrolyte junction contact
intertace

Abdi, Nat.Comm. 4, 2195 (2013)
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Photoelectrochemical (PEC) water-splitting

e Benchmark PEC cells reached a hydrogen
production efficiency of 12.4% with
GaAs', recently 12.3% with perovskites 2

e The current challenge is to fabricate them
economically -> metal oxide
semiconductors (FeoO3z, Cu,0)

e To become economically viable, 10%
solar-to-hydrogen (STH) efficiency® and
long-term stability needs to be achieved

"Khaselev et al., Science 280, 425 (1998) Fi .

’ ’ igure: Courtesy LPI EPFL.
2Luo et al., Science 345, 1593 (2014) 9 y
3Pinaud et al., Energy Environ. Sci. 6, (2013)
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Charge transport model in 1D semiconductor

e Poisson’s eq for electrostatic potential ¢, electron and hole continuity eqgs for their
concentrations n, p

d?¢ _ ~ g(Np — n(x) + p(x)) (1)
ax2 E0Er ’

A0 o

E - +q 8)( + Ge(x) Re(x)7 (2)
0 19

ai; - _aa*j: + Gh(x) — Rn(x), (3)

where Np is donor density in n-type semiconductor, vacuum and relative permitivity is

€0, €r, €lectronic charge is q.
e Lambert-Beer generation for 1 sun illumination AM15G

>\g
Ge = Gp = / a(A)Pamrsa(A)e*MXa.
A

min

e SRH recombination R, = R, with trap level at intrinsic level, hole SRH lifetime is t,
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Charge transport model in 1D semiconductor

e Drift-diffusion equations for current densities

. on 0

Je = +Qque Vtha — e,uenaffa
S op d¢
Jh = —Qun Vth87 — P s

where charge mobilities are denoted pie, up and Vi, = 0.026 V is thermal voltage.
e Variables solved for n, p, ¢ in Semiconductor Module
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Boundary conditions

o Potential at semiconductor/liquid junction is implemented with Schottky barrier (height
changes with applied voltage) model and band edge pinning (tricky)

#(0) = const (4)

e Ohmic back-contact is assumed
¢(d) = Va. (5)
e Hole current

Jn(0) = —q kin(p(0) — Paark)

jh(d) = —-q rs(p(d)_pdark)-
e Electron current

Je(0) = 0,

Je(d) = +qrs(n(d) — Ngark)-
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Stationary results @ 1.2 V

e Fe,O3 photoanode material parameters used, however many parameter uncertainties

exist!
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Stationary results @ 1.2 V

e Numerical IV curve does not perfectly reproduce the experimental IV => our set of model
assumptions and material parameters needs to be altered

e |V response couples all kinetic effects inside one response curve => reducing the
parameter uncertainty is not unambiguous
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Frequency-domain perturbation study

© Stationary solution n%, p®_ 4% is calculated

® Harmonic perturbation in voltage V,(t) = Vo + Vacegivt causes harmonic perturbation in
variables => linearization

p(t, x) = p®(x) + p*(x)e“!, ...
® Differential equations for perturbed variables

U e

fwp™ = q 0x

. . . . ac
O Numerical solution and calculation of impedance Z = ‘,%

©® Framework is general and can be used for many spectroscopic/transient techniques
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Impedance in the dark (Mott-Schottky)

e Frequency is fixed and applied voltage V; is increased
e The Mott-Schottky theory approximates the impedance by series connection of resistor
and space-charge capacitance Cgc, thus implying é‘—j = 2V

esregNp *
 From Comsol solution, we obtain capacitance as Cy> = w?imag(Z)2.
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Photoelectrochemical impedance

e We investigated the dependence of real (R;) and imaginary (/1) part of lowest frequency
impedance on parameters ki, and t,
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Extraction of rate constant and hole lifetime

e The linear relation between R; and k1, as well as between R; and ty, is obtained from

simulations

e => parameter extraction from comparison of measured and simulated impedance data
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Heterojunction devices

e Additional layers provide chemical stability, photovoltage or charge selectivity
e TiO,/Cu,0O photocathode : how band offset (deltaEc) between semiconductor layers
changes photocurrent onset potential
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Summary and Outlook

e Numerical drift-diffusion calculations of the photoelectrochemical impedance

e Extraction of these two parameters from the comparison of slope of measured and
simulated data

¢ Detail validation of the model with measured data for hematite is challenging due to
uncertainties in values of material parameters/processes => further investigations of
recombination and charge transfer kinetics needed

Thank you for attention!
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Hematite (o-Fe»0O3) parameters

Symbol | Value Description

pH 14 pH value

Vi +0.5 V vs. RHE | Flatband potential

Np 2.9-10" cm~—2 | Donor concentration

N¢ 4.10%2 cm—3 Density of states of conduction band
Ny 1.102 cm~—3 Density of states of valence band
Er 32 Relative permittivity

E, 22¢eV Bandgap energy

d 33 nm Thickness of semiconductor

I 1000 Wm—2 lllumination power density

Th 48 ps Hole lifetime

Ly 5nm Hole diffusion length

a 1.5-10" m~! Absorption coefficient
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