

OPTIMIZATION OF MICROSTRUCTURES USED IN CMOS-MEMS SENSORS BASED ON TOPOLOGICAL DESIGN PROCESS

J. Mares-Carreño, G.S. Abarca-Jiménez, and M.A. Reyes-Barranca

CONTENTS

- INTRODUCTION
- PROBLEM STATEMENT
- CAPACITIVE STRUCTURES
- TOPOLOGICAL DESIGN
- METHODOLOGY
 - ELECTROMECHANICAL ANALYSIS
 - 2D OPTIMIZATION MODELS
 - 3D OPTIMIZATION MODEL
 - OPTIMIZED CAD MODEL
 - SATATIC STRUCTURAL ANALYSIS
- CONCLUSIONS

INTRODUCTION

- Inertial MEMS design
- CMOS technology
- CMOS-MEMS

ilt angle: 0

A BUS

- CMOS-MEMS design efforts focused primary on electronics design
- CMOS technology limitations
- Manufacture dificulties

CAPACITIVE STRUCTURE

- Most common transduction principles used in CMOS-MEMS
- Analogy to a parallel plate capacitor
- Based on design rules of a standard CMOS process
 - 0.5 microns
 - N-well
 - Double polysilicon
 - Three metal layers

TOPOLOGICAL DESIGN

- Needs and restrictions
 - Anchors dimensions
 - Fixed thickness
 - Optimize stiffness in desired direction
- Size and shape can be modified
 - Topology optimization is suitable
- SIMP model
 - Minimize the weight of the domain setting a minimum rigidity
 - Displacements in a desired direction are constrained

ELECTROMECHANICAL ANALYSIS

- Simple geometry
- 3D
- Fixed supports on beams
- 5V applied
- Negligible displacements

2D OPTIMIZATION MODELS

- Two models were proposed
 - 16g and 250g
 - Desired displacements 0.5 microns
- Quad equiangular elements
 - Great mesh quality
 - Elements equally distributed
- Mesh independency mechanism omited
 - Checkerboard effect
- Continuation method
 - On penalty factor
 - On mesh size

3D OPTIMIZATION MODEL

- One model proposed
 - 250g
- Tetra mesh
 - Great quality
 - Two elements in z-direction
- Material distribution on z-direction
 - Not uniform
- Variation against 2D
 - Gravity applied
- Continuation method

OPTIMIZED CAD MODEL/STATIC STRUCTURAL ANALYSIS

CONCLUSIONS

- Topology optimization in MEMS design
- Forces and proposed design spaces
- Mesh independecy mechanism
- Z-direction material distribution
- Out of plane deflection

THANK YOU FOR YOUR ATTENTION

QUESTIONS?