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Abstract: Spectra of stability of 3D steady-
state current transfer to thermionic cathodes 
of a high-pressure argon arc are computed in 
the framework of the model of nonlinear 
surface heating. The spectra obtained include 
the part associated with perturbations 
possessing symmetry different from that of 
the 3D steady-state mode itself, in contrast to 
the preceding work in which that part was 
lacking. Results obtained conform to the 
analytical theory. 
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1. Introduction 
 

Interaction of high-pressure arc plasmas with 
thermionic cathodes is a challenging issue of 
high scientific interest and technological 
importance. Current transfer from high-pressure 
arc plasmas to thermionic cathodes may occur in 
a diffuse mode, when the current is distributed 
over the front surface of the cathode in a more or 
less uniform way, or in a spot mode, when most 
of the current is localized in one or more small 
areas (cathode spots). The diffuse mode is 
favorable for operation of cathodes of high-
pressure devices, however it is difficult to be 
realized, because under many conditions this 
mode is unstable and one of the spots modes 
appears. Recently a self-consistent theory and 
modeling methods have started to emerge. Still, 
some important questions are far from being 
answered. Stability of different modes of steady-
state current transfer from high-pressure arc 
plasmas to thermionic cathodes is one of such 
questions. This information is important for 
engineering practice, since one needs to know 
which of the modes are stable in conditions of 
interest.  

The present work represents a continuation 
of a numerical investigation of stability of 3D 
modes of current transfer to axially symmetric 
cathodes that was started in [1]. In [1], only the 
part of the spectrum that is associated with even 
(with respect to the azimuthal angle) 

eigenfunctions was calculated. The part of the 
spectrum that is associated with odd 
eigenfunctions was analyzed qualitatively on the 
basis of theoretical results [2]. Presently, the 
difficulty in calculation of odd perturbations by 
means of COMSOL Multiphysics 3.4 has been 
overcome and a modeling of a complete 
spectrum became possible. Such modeling is 
reported in this paper. 

 
2. Model and numerics 
 
2.1 Equations and boundary conditions 
 

Modeling of the present work is based on the 
model of nonlinear surface heating, which has 
been by now widely recognized as an adequate 
tool of simulation of interaction of high-pressure 
arc plasmas with thermionic cathodes; see 
review [3] and references therein. The 
temperature distribution inside the cathode is 
governed by the non-stationary equation of heat 
conduction: 
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where κ, ρ, and cp are thermal conductivity, 
density, and specific heat of the cathode material 
(known functions of the temperature T) and t is 
time. Joule heat production inside the cathode is 
neglected. 

The base Γc of the cathode is maintained at a 
fixed temperature Tc by external cooling. The 
rest of the cathode surface, Γh, is in contact with 
the plasma or the cold gas and exchanges energy 
with it. The boundary conditions read  
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Here n is the direction locally orthogonal to the 
cathode surface and oriented outward and q is 
the density of the energy flux to the cathode 
surface from the arc plasma or the cold gas (a 
known function of the local cathode temperature 
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T  and the voltage drop U across the near-
cathode layer.) 

The total electric current I to the cathode 
surface (the arc current) may be evaluated in 
terms of a distribution of the cathode surface 
temperature and of the value of U by means of 
the formula 
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where j = j(T,U) is the density of electric current 
to the current-collecting part of the cathode 
surface. A relation between U and I is given by 
the equation of external circuit 
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where Ω is the external resistance (ballast) and ε 
the electromotive force. 

Densities of the energy flux and of the 
electric current to the cathode surface, q and j, 
are governed by equations describing the near-
cathode layer in a high-pressure arc plasma and 
in the present analysis are treated as known 
functions of the local surface temperature and of 
the voltage drop across the near-cathode layer: q 
= q(T,U) and j = j(T,U).  
 
2.2 Numerical solution 
 

A method of investigation of stability of 
steady states employed in [1] was as follows. 
Equations (1)-(4) have been solved numerically 
by means of COMSOL Multiphysics, version 
3.4, through a heat transfer application mode, 
using the stationary and eigenvalue solvers. A 
weak point of this approach is that it does not 
allow different boundary conditions for a steady-
state solution and perturbations. This can be 
explained as follows. 

Modeling results presented in this study refer 
to cathodes in the form of a right circular 
cylinder. Steady-state temperature distributions 
on axially symmetric cathodes may be axially 
symmetric or 3D. Axially symmetric 
distributions correspond to the diffuse mode and 
to modes with axially symmetric spot systems (a 
spot at the center of the front surface of the 
cathode, a ring spot, a spot at the center and a 
ring spot, etc). 3D distributions correspond to 
modes with 3D spot systems. Let us restrict the 

consideration with 3D solutions and assume that 
they possess planar symmetry. Let us introduce 
Cartesian coordinates (x,y,z) with the origin at 
the center of the front surface of the cathode and 
the z-axis directed along the axis inside the 
cathode, in such a way that the steady-state 
temperature distribution be even with respect to 
y. 

While numerically calculating a steady-state 
3D distribution on an axially symmetric cathode, 
one must impose an additional condition in order 
to specify azimuthal position of the 3D spot 
system, and thus to ensure convergence of 
iterations. This can be achieved by restricting the 
calculation domain to half of the cathode, y ≥ 0, 
and imposing the symmetry condition at the 
plane y = 0: ∂T0/∂y = 0, where the index 0 is 
attributed to the steady state. Of course, this 
approach allows one not only to fix the 
azimuthal position of a 3D spot system but also 
to save RAM and CPU time. 

There is no problem in restricting the 
calculation domain to half of the cathode also 
while stability of steady-state solutions is 
investigated. However, the use of heat transfer 
application (or PDE) mode of COMSOL 
Multiphysics with the stationary and eigenvalue 
solvers implies that the symmetry boundary 
condition is imposed also on perturbations: 
∂T1/∂y = 0 at y = 0, where index 1 is attributed to 
the amplitude (time-independent factor) of 
perturbations. In other words, COMSOL 
Multiphysics allows one to study stability against 
axially symmetric perturbations and 3D 
perturbations that are even with respect to y, but 
not against 3D perturbations that are odd with 
respect to y. This does not pose a problem while 
stability of axially symmetric steady states is 
investigated: 3D even and odd perturbations of 
an axially symmetric steady state are identical to 
the accuracy of a rotation and are therefore 
associated with the same eigenvalue (which is, 
consequently, doubly degenerated), hence an 
account of 3D odd perturbations will not change 
conclusions on stability. The situation is 
different as far as stability of even 3D steady 
states is concerned: odd and even perturbations 
of even 3D steady states are essentially different 
and are therefore associated with different 
eigenvalues, and eigenvalues associated with odd 
perturbations cannot be computed by means of 
COMSOL Multiphysics using only a heat 
transfer application mode or the PDE mode.  



To overcome this difficulty, the following 
procedure was applied. A solution to the problem 
(1)-(4) is explicitly represented as sum of a 
steady-state solution and a small perturbation 
with the exponential time dependence (a 
representation usual in the linear stability 
theory): 
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Here r

r
 is the space vector and λ is the growth 

increment of the perturbations. The steady-state 
solution (T0, U0, and I0) is governed by the 
problem (1)-(4) without the nonstationary term 
of Eq. (1). Substituting these expansions into 
Eqs. (1)-(4), linearizing and equating linear 
terms, one obtains the problem governing the 
perturbations T1, U1, and I1: 
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Here ρ(T0), (∂q/∂T)(T0,U0) etc are evaluated in 
terms of the temperature distribution of the 
steady state, T0, and of the near-cathode voltage 
drop U0 corresponding to the steady state. 

Eq. (6) with the boundary conditions (7)-(10) 
represents a closed linear eigenvalue problem for 
the function T1 and the eigenvalue λ. By means 
of solving this problem, one will determine a set 
of eigenvalues λ (spectrum) for every stationary 
state of interest. 

The procedure of solution was as follows. 
First, the steady-state problem is solved through 
the heat transfer application mode (or the PDE 
mode) and function T0 and quantities U0, and I0 
determined. After this, the eigenvalue problem 
(6)-(10) for perturbations is solved by means of 
the (added) PDE mode with the boundary 
condition ∂T1/∂y = 0 at the plane y = 0 for even 
perturbations and T1 = 0 at the plane y = 0 for 
odd perturbations. Of course, the spectrum of 
even perturbations can be calculated also in the 
same way as in [1], that is, solving the system of 
Eqs. (1)-(4) through the heat transfer application 
mode using the stationary and eigenvalue 
solvers.  
 
3. Numerical results 
 

Numerical calculations reported in this work 
have been performed for a tungsten cathode of 
radius R = 2 mm and height h = 10 mm, and an 
argon plasma at the pressure of 1 bar. Data on 
thermal conductivity and heat capacity of 
tungsten have been taken from [4] and [5], 
respectively. The density of tungsten equals 
19,250 kgm-3 and the value of 4.55 eV was 
assumed for the work function of tungsten. The 
cooling temperature Tc was set equal to 293 K. 
Functions q = q(T,U) and j = j(T,U) have been 
calculated by solving equations describing the 
near-cathode layer in a high-pressure plasma 
which are summarized in [6], see also the 
Internet site [7]. 

Stability of 3D steady-state modes against 
odd perturbations has been numerically studied 
for modes with υ = 1, 2, 3, 4 spots at the edge of 
the front surface of the cathode. Odd 
perturbations of these steady-states are periodic 
with respect to the azimuthal angle with period 
T. Table 1 shows the period T and the sign of 
increments of the six odd perturbations with 
biggest values of the increment at the ‘initial’ 
state (at the bifurcation point) and at all the states 
beyond the bifurcation point for the above 
steady-state modes. (It should be emphasized 
that 3D spot modes at the ‘initial state’ are 
axially symmetric, and in the following, 
conclusions refer to situations where the 3D spot 
modes are effectively 3D.) If the increment of a 
perturbation is null, the state is neutrally stable 
against this perturbation; if the sign of the 
increment is positive, the state is unstable against 
this perturbation; and if the sign of the increment 



is negative, the state is stable against this 
perturbation. 

One can see from table 1 that the 3D steady-
state mode with one spot at the edge of the front 
surface of the cathode possesses one odd 
perturbation with period 2π that always has a 
null increment. All the other odd perturbations 
always have negative increments, however their 
periods are not always the same: at the 
bifurcation point, all the periods 2π/n, n = 1, 2, 
3,…, are permitted, but beyond the bifurcation 
point only the period 2π is permitted. Therefore, 
the 3D steady-state mode with one spot at the 
edge of the front surface of the cathode is 
neutrally stable against one mode of odd 
perturbations with period 2π and stable against 
all the other modes of odd perturbations. 

 
Table 1: Period T and sign of increments of the six 
odd perturbation modes with biggest values of the 
increment for steady-state modes with one, two, three 
and four spots at the edge of the front surface of the 
cathode, at the bifurcation point (b.p.) and beyond it. 
υ: number of spots at the edge of the front surface of 
the cathode.  
 

υ T 
Sign of 

increment 
at the b.p. 

Sign of 
increment 

beyond b.p. 
2π 0, -, -, - 0, -, -, -, -, - 
Π -  1 

2π /3 -  
2π +,-, -, - +, -, -, -, - 
Π 0 0 2 

2π /3 -  
2π +, -, - +, +, -, -, - 
Π +  

2π /3 0 0 
3 

π/4 -  
2π +, -, - +, +, -, - 
Π + + 

2π /3 +   
4 

π/4 0 0 
The 3D steady-state mode with two spots at 

the edge of the front surface of the cathode 
possesses one odd perturbation with period 2π 
that always has positive increments. Also 
possesses one odd perturbation with period π that 
always has a null increment. All the other odd 
perturbation modes always have negative 
increments, however their periods are not always 

the same once again: at the bifurcation point all 
the periods 2π/n are permitted, but beyond it 
only periods 2π and π are permitted. Therefore, 
the 3D steady-state mode with two spots at the 
edge of the front surface of the cathode is 
neutrally stable against one mode of odd 
perturbations with period π, unstable against one 
mode of odd perturbations with period 2π and 
stable against all the other modes odd 
perturbations. 

The 3D steady-state mode with three spots at 
the edge of the front surface of the cathode 
possesses one odd perturbation with period 2π 
that always has positive increments. This 3D 
steady-state mode also possesses one odd 
perturbation, with period π at the bifurcation 
point and period 2π beyond it, that always has 
positive increments. Likewise the other 3D 
steady-state modes, this mode possesses one odd 
perturbation that always has a null increment, but 
with period 2π/3. All the other odd perturbations 
always have negative increments, again their 
periods are not always the same: at the 
bifurcation point all the periods 2π/n are 
permitted, but beyond it only periods 2π and 
2π/3 are permitted. Therefore, the 3D steady-
state mode with three spots at the edge of the 
front surface of the cathode is neutrally stable 
against one mode of odd perturbations with 
period 2π/3, unstable against two modes of odd 
perturbations with period 2π and stable against 
all the other modes of odd perturbations. 

The steady-state mode with four spots at the 
edge of the front surface of the cathode possesses 
one odd perturbation with period 2π and one odd 
perturbation with period π that always have 
positive increments. This steady-state mode also 
possesses one odd perturbation, with period 2π/3 
at the bifurcation point and period 2π beyond it, 
that always has positive increments. Likewise 
the above mentioned 3D steady-state modes, this 
mode possesses one odd perturbation that always 
has a null increment, but with period π/4. All the 
other odd perturbations always have negative 
increments, however their periods are not always 
the same: at the bifurcation point all the periods 
2π/n are permitted, but beyond it only periods 
2π, π and π/4 are permitted. Therefore, the 3D 
steady-state mode with four spots at the edge of 
the front surface of the cathode is neutrally stable 
against one mode of odd perturbations with 
period π/4, unstable against two modes of odd 
perturbations with periods 2π and one mode of 



odd perturbations with period π, and stable 
against all the other modes of odd perturbations. 

The above results may be summarized as 
follows. Odd perturbations do not change sign of 
their increment along 3D steady-state spot 
modes. Odd perturbations of a steady-state mode 
with υ spots at the edge of the front surface of 
the cathode are periodic with respect to the 
azimuthal angle with the periods contained 
between 2π and 2π/υ and defined by the same 
rule as periods of even perturbations; see table 1 
of [2]. Such state is neutrally stable against one 
mode of odd perturbations with the period of 
2π/υ and stable against the other modes of odd 
perturbations with the same period; if υ ≥ 2, then 
this state is unstable against υ-1 modes of odd 
perturbations with periods exceeding 2π/υ and 
stable against all the other modes of odd 
perturbations with such periods.   
 
4. Conclusions 
 

A complete pattern of stability of 3D steady-
state modes of current transfer to axially 
symmetric cathodes has been numerically 
calculated. 

The obtained results conform to the 
analytical theory [2] and also conform to the 
reasoning given at the end of section 4.5 of [1]. 
Therefore, conclusions on stability drawn in [1] 
remain unaltered. 
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