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Objective

Develop a COMSOL simulation such that:

1 The region, R, occupied by the fluid is un-
bounded;

2 There is a subregion, Rc, in which the mo-
tion is rotational (i.e. the velocity field, u
satisfies curl (u) ⇧= 0);

3 There is a doubley connected subregion,
Rc\R, in which the motion is irrotational,
i.e. curl (u) = 0.



Domain mapping by Kelvin Inversion
Physical (R, ⇥,⇤) Proxy (q,⇧,⌥)

Radial Colatitudinal Azimuthal
R/a = (q/a)�1 , ⇥ = ⇧ , ⇤ = ⌥ ,

êR = ûq , ê⇥ = û⌅ , ê⇤ = û⌃ ,

R ⌥
⌥R = �q ⌥

⌥q , ⌥
⌥⇥ = ⌥

⌥⌅ , ⌥
⌥⇤ = ⌥

⌥⌃ .



Field equations, physical domain, I

Let R, Rc ⇤ R, and R\Rc denote all of physical
space, the region occupied by the vortex core,
and the compliment of Rc in R, respectively. Let
u denote the velocity field. I assume that

divu = 0 ⌃ R ⌅ R,

curlu =
�

Arê⇤, ⌃ R ⌅ Rc,
0, ⌃ R ⌅ R\Rc,

in which (r,⇤, z) are cylindrical coordinates,
{êr, ê⇤, k̂} is the corresponding system of unit
vectors, and A is a constant.



Transformation to a
second order system

We have curlu = ⌅⇤ê⇤, in which ⌅⇤ := �ur/�z �
�uz/�r. Let

F :=
�
�(⌅⇤ �Ar)êr + (2divu)k̂ ⌃ R ⌅ Rc,
�⌅⇤êr + (2divu)k̂ ⌃ R ⌅ Rc\R.

The field equations therefore require that F van-
ish identically. One may ensure that it does by
requiring that

curlF = 0 and divF = 0

subject to F • n̂ = 0 on �R.



Field equations, physical domain, II

For R ⌅ R the equations curlF = 0 and divF =
0 are equivalent to

( �/�r �/�z )

⇥
2 divu

(⌅⇤ �Ar)

⇤
= 0

and

( �/�r �/�z )

⇥
�r(⌅⇤ �Ar)

r 2 divu

⇤
= 0 ,

respectively, which are suited to programming in
COMSOL’s General Form PDE physics interface
(with the default Zero Flux boundary condition).



Field equations, proxy domain, I

For q ⌅ Q the equations curlF = 0 and divF = 0
are equivalent to

( �/�⌃ �/�� )

⇥
⌃ F⇧

⌃ F�

⇤
=

⇥
0

0

⇤
,

( �/�⌃ �/�� )

⇥
F�

�F⇧

⇤
=

⇥
0

0

⇤
,

in which
⌃ = q sin⇧ , � = q cos⇧

are cyindrical coordinates in the proxy domain,



Field equations, proxy domain, II
F⇧ = 2(u⇧/⌃)a�2S

+ a�2[2u�,�S � (u⇧,� + u�,⇧)C]
� 2a�2[S2u⇧,⇧+SCu⇧,�+CSu�,⇧+C2u�,� ]S ,

F� = 2(u⇧/⌃)a�2C

� a�2[(u⇧,� + u�,⇧)S � 2u⇧,⇧C]
� 2a�2[S2u⇧,⇧+SCu⇧,�+CSu�,⇧+C2u�,� ]C ,

in which the commas denote partial di⇥erentia-
tion, u = u⇧û⇧ + u�û� , and

C := �/q , S := ⌃/q , q = (⌥2 + �2)1/2 .



Flux boundary condition for
proxy domain, and continuity

by proxy across a portal

As in the physical domain COMSOL’s default
Zero Flux boundary condition is appropriate in
the proxy domain and su⇤ces to ensure that
divu = 0 and curlu = 0 there. Here I dis-
tinguish between a boundary and a portal. The
latter is an internal boundary across which one
specifies conditions that ensure continuity by
proxy for both the velocity components and the
fluxes.



Boundary conditions for normal
and tangential velocity, I

Let n̂ denote the outward unit normal vector
on any boundary and let t̂ = ê⇤ ⇥ n̂ be the
corresponding unit tangent.

In the upper half of Rc the velocity u is
unique provided one specifies values of u • n̂
on part of the boundary (in this case the core
boundary) and u • t̂ on the rest (in this case the
equitorial edge).



Boundary conditions for normal
and tangential velocity, II

In the upper half of Rc\R (including the proxy
domain) the velocity u is not unique even if one
specifies values of u • n̂ on two disjoint parts of
the boundary (viz. the centerline and the core
boundary) and u • t̂ on the rest (viz. the two dis-
joint equitorial edges). A supplementary condi-
tion, namely specification of the value of � in the
integral constraint

⌅
C u • t̂ ds = �/2, in which C

is the upper core boundary, does ensure unique-
ness.



On propagation speed of the ring, I

One may calcuate the propagation speed of the
ring in two ways, depending on the choice of ref-
erence frame. In one, the observer moves with
the ring and the remote fluid is in uniform mo-
tion at a unknown speed, W⇥. In COMSOL one
may introduce a physics interface of the form
Global ODEs and DAEs with dependent variable
W⇥ and constraint expression

⌅
C u • t̂ ds � �/2.

For this choice of reference frame u • t̂ = 0 on
both equitorial edges and u • n̂ = 0 on the cen-
terline and the core boundary.



On propagation
speed of the ring, II

In another choice of reference frame the ob-
server is at rest relative to the remote fluid
and the ring rises uniformly at a unknown
speed, Wrise. This time in the Global ODEs
and DAEs physics interface the dependent vari-
able is Wrise and again the constraint expres-
sion is

⌅
C u • t̂ ds � �/2. For this choice of

reference frame u • t̂ = 0 on both equitorial
edges and u • n̂ = 0 on the centerline but now
u • n̂ = Wrisek̂ • n̂ on the core boundary.



Meridional cut through a vortex ring as seen
by an observer moving with the ring showing
streamlines and velocity vectors. Colors de-

note azimuthal vorticity.



Tangential (ut) and normal (un) components
of velocity over the core boundary on its two
sides, corresponding to rotational and irrota-

tional motion.



Meridional cut through a vortex ring as seen
by an observer at rest relative to the remote
fluid showing streamlines and velocity vectors.

Colors denote azimuthal vorticity.



Conclusions (Part 1 of 2)

1 COMSOL enables computation of a
solenoidal velocity field in a physical do-
main Ri ⌥ Re—in which Ri and Re denote a
bounded interior and an unbounded exterior
regions, respectively—by simultaneous solu-
tion for the flows in Ri and Q, in which Q is
a bounded proxy for Re;

2 COMSOL’s General Extrusion model cou-
pling operator enables one to give e⇥ect to
the change of independent variable (Kelvin
Inversion) that maps Re to Q;



Conclusions (Part 2 of 2)

3 The simultaneous assumptions that the vor-
tex core has circular cross section and that
the azimuthal vorticity in the core is directly
proportional to the distance from the cen-
terline enables one to satisfy continuity of
normal but not tangential velocity across
the core boundary.


