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Abstract: Jeffery’s theory describes the periodic 

rotation of ellipsoidal particles in a simple shear flow 

at vanishing Reynolds number limit. In this paper, we 

present direct numerical simulations, implemented by 

using the arbitrary Lagrangian-Eulerian (ALE) 

method, to study the motion of ellipsoidal 

paramagnetic particles in a simple shear flow 

subjected to a uniform magnetic field. We 

investigated the effect of several parameters, 

including magnetic field strength, direction of 

magnetic field, and particle aspect ratio, on rotation 

period and asymmetry of particle rotation. Without a 

magnetic field, the simulation results are in good 

agreement with Jeffery’s theory. When a magnetic 

field is applied perpendicular to the flow direction, 

the rotational period became longer, and the magnetic 

field breaks the symmetry of rotational motion of the 

ellipsoidal particle. As the magnetic field strength 

increases to a large enough value, the particle could 

not perform a complete rotation and reaches a steady 

angle. With other different directions of the magnetic 

field, the period of rotation and asymmetry of the 

angular dynamics is also modified. 
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1. Introduction 

 
Non-spherical microparticles are widely 

encountered in industrial, environmental and 

biological fluids: for example wood fibers in the 

paper-making industry[1], suspensions in complex 

fluids[2], and various micron-sized biological 

objects[3]. In biology and bioengineering, shape is 

one of the most important physical attributes of 

biological relevant particles[3,4]. It plays an 

important role in various applications of biomedicine 

and biology, such as diagnosis of diseases[5], drug 

delivery[6] and cell synchronization[7]. Because 

biological particles are often suspended in fluid 

environments, it is critical to understand the 

fundamental transport behaviors of non-spherical 

particles suspended in fluids. Over the last few 

decades there have been comprehensive theoretical 

and experimental investigations about the motion of 

ellipsoidal particle in a simple shear flow[8–11].  

Jeffery[8] firstly studies the motion of ellipsoidal 

particle immersed in a simple shear viscous flow. The 

periodic motion of particle is so called “Jeffery 

orbits”. The rotation period of a prolate spheroid with 

an aspect ratio AR (major semi-axis length / minor 

semi-axis length) in a simple shear flow U = (𝜸̇𝒚, 0, 

0) is given by 

 𝑇 =
2𝜋

𝛾̇
(𝐴𝑅 +

1

𝐴𝑅
). (1) 

The angle between the particle’s major axis and the 

z-axis, θ, and the angle between the y-axis and xy-

projection of the particle axis, ϕ, are shown in Figure 

1, which are given by 

 𝑡𝑎𝑛𝜃 =
𝐶∙𝐴𝑅

√𝐴𝑅2𝑐𝑜𝑠2𝜙+𝑠𝑖𝑛2𝜙
, (2) 

 𝑡𝑎𝑛𝜙 = 𝐴𝑅𝑡𝑎𝑛(2𝜋
𝑡

𝑇
), (3) 

where C is the orbit constant determined by the initial 

orientation of the particle. For C=∞ (θ=90°), the 

particle just rotates in xy-plane, which means that ϕ 

only depends on the particle aspect ratio and the flow 

shear rate. 

 
Figure 1. Schematic of an ellipsoidal particle in a simple 

shear flow 

 

    In this paper, a 2D fluid-structure interaction (FSI) 

model is created to study the effect of magnetic field 

and particle aspect ratio on the period of rotation and 

symmetry of ellipsoidal paramagnetic particles.  The 

paper is organized as follows. In Section 2, the 

simulation method, including mathematical model, 

COMSOL setting and material properties, is 

presented. In Section 3, we first compare the 

rotational period obtained from the simulation to 

Jeffery’s theory. Then we present the results and 

discussion about the effect of the strength and 
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direction of magnetic field and particle aspect ratio 

on particle. In Section 4, the main conclusions of this 

study are summarized. 

 

2. Simulation method 

 
2.1 Mathematical model 

 

  
Figure 2. An ellipsoidal particle suspended in a simple 

shear flow and under a magnetic field H, which is directed 

at an angle α. 

 

We consider an ellipsoidal particle immersed in a 

simple shear viscous flow in a Newtonian fluid with 

density ρf and dynamic viscosity ηf as shown in 

Figure 2. The center of the particle, coinciding with 

the origin of Cartesian coordinate system, is located 

in the center of a square computational domain. The 

particle aspect ratio is AR = a/b, where a and b are 

the major and minor semi-axis lengths of particles, 

respectively. The length of the computational domain 

is L. The rotation angle of particle is defined as 𝜙 

between the major axis of the particle and y axis. The 

shear flow is u=𝛾̇𝑦, where 𝛾̇ is the shear rate of flow. 

A uniform magnetic field, H, is imposed at an 

arbitrary direction, denoted by α. 

The Jeffery orbits are obtained with the assumption 

of Stokes flow, i.e., zero Reynolds number and no 

fluid inertia. Therefore, the flow field, u, is governed 

by the continuity equation and Stokes equation： 

 
∇ ∙ 𝒖 = 0, 

ρ𝑓
𝜕𝒖

𝜕𝑡
= ∇ ∙ [−𝑝𝑰 + 𝜂𝑓(∇𝒖 + (∇𝒖)𝑇)], 

 (4) 

where p is the pressure.  

To have a simple shear flow, the velocities of top 

and bottom walls are set to have the same magnitude 

but opposite directions. The periodic flow conditions 

are set to the left and right boundaries of the 

computational domain. No-slip condition is set on the 

particle surface, so the fluid velocities on the particle 

surface are given as: 

 𝐮 = 𝐔𝑝 +𝝎𝑝 × (𝐱𝑠 − 𝐱𝑝), (5) 

where Up and ωp are the translational and rotational 

velocities of particle, respectively. xs and xp are the 

position vectors of the surface and the center of  the 

particle. The hydrodynamic force and torque acting 

on the particle are expressed as: 

 𝐅H = ∫(𝝉𝐻 ∙ 𝒏)𝑑𝑆, (6) 

 𝐓H = ∫[𝝉𝐻 × (𝐱𝑠 − 𝐱𝑝) ∙ 𝒏]𝑑𝑆, (7) 

where 𝝉𝐻 = −𝑝𝑰 + 𝜂𝑓(∇𝒖 + (∇𝒖)𝑻)  is the 

hydrodynamic stress tensor on the surface of particle. 

The governing equations of the uniform magnetic 

field are given as: 

 
𝐇 = −∇𝑉𝑚, 

∇ ∙ 𝐇 = 0, 
(8) 

where Vm is the magnetic potential. The magnetic 

potential difference to generate the magnetic field is 

set on the top and bottom wall. Magnetic insulation 

boundary condition is applied on the left and the right 

boundaries of the computational domain.  

    Since the magnetic field is uniform, the force 

acting on the particle is zero. The magnetic torque 

acting on particle is expressed as[12]: 

 𝐓m = μ0𝑉𝑝(𝜒𝑝 − 𝜒𝑓)𝑯
− × 𝑯0,  (9) 

where 𝑯−and 𝑯0  are the magnetic fields inside and 

outside the particle, respectively. 𝜒𝑝  and 𝜒𝑓  are the 

magnetic susceptibilities of the particle and fluid, 

respectively. μ0  is the permeability of vacuum, and 

Vp is the volume of particle. 

The translation and rotation of particle are 

governed by Newton’s second law: 

 𝑚𝑝
𝑑𝑼𝑝

𝑑𝑡
= 𝑭𝐻, (10) 

  𝐼𝑝
𝑑𝝎𝑝

𝑑𝑡
= 𝑻𝐻 + 𝑻𝑚, (11) 

where mp and Ip are the mass and the moment of 

inertia of the particle. The angular velocity of 

particle𝝎𝑝 = 𝝎ℎ +𝝎𝑚 , where 𝝎ℎ  is the angular 

velocity produced by hydrodynamic torque and 𝝎𝑚 

is the angular velocity produced by magnetic torque. 

At each time step, the position of center Cp(t) = 

(Xp,Yp) and orientation ϕp(t) = ϕ(t) of the particle are 

expressed as: 

 𝑪𝒑(𝑡) = 𝑪𝒑(0) + ∫ 𝑼𝑝(𝑠)𝑑𝑠
𝑡

0
, (12) 

 ϕ𝑝(t) = ϕ𝑝(0) + ∫ 𝝎𝑝(𝑠)𝑑𝑠
𝑡

0
, (13) 

where 𝑪𝒑(0) and ϕ𝑝(0) are the initial position and 

orientation of the particle. 

 

2.2. COMOL settings 
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Figure 3. Magnetic field around the particle under the 

uniform magnetic field of H0=3000A/m at ϕ=45°. 

 

To calculate the magnetic torque acting on the 

particle, the magnetic field around the ellipsoidal 

particle is first computed by the AC/DC module in 

COMSOL Multiphysics® software. Figure 3 shows 

the magnetic field around the particle in the 

computational domain under the magnetic field of 

H0=3000A/m, directed at α=0. Stationary Solver with 

Parametric Sweep analysis are used to calculate the 

magnetic field inside and outside of the particle at 

different rotation angle ϕ. Due to the symmetry of 

ellipsoidal particle, the simulation was conducted at ϕ 

from -90° to 90° with an angle step of 1°. 

 
Figure 4. Velocity field in a simple shear flow at a shear 

rate of 𝛾̇=200 s-1. 

 

The fluid-structure interaction (FSI) model is 

solved by using the arbitrary Lagrangian-Eulerian 

(ALE) method. The detailed implementation of this 

method can be found in the paper of Hu et al[13]. 

Modelling of FSI is realized by combining Creeping 

Flow component in Fluid Flow module, Global 

ODEs and DAEs and Moving Mesh components in 

Mathematics module as shown in Figure 4.   

Creeping Flow component is used to compute the 

flow field around the ellipsoidal particle. The top and 

bottom walls are set as moving wall condition with 

velocities at 1.5mm/s and -1.5mm/s respectively. 

Hence, the corresponding shear rate is 200 s-1. The left 

and right boundaries are set as periodic flow 

conditions with zero pressure difference. No-slip 

boundary condition is set on the surface of particle, 

so the particle wall is set as a moving wall with fluid 

velocity of u as defined in Eq. (4). 

The translational and rotational motion of the 

particle is determined by solving ordinary differential 

equations (ODEs) in Global ODEs and DAEs 

component.  Eq. (10)-(13) are used in Global 

Equations to calculate translational and rotational 

velocities, and the position and orientation of the 

particle at each time step. 

Moving Mesh component is used to describe the 

deforming mesh at the particle-fluid boundaries. 

Automatic Remeshing is enabled to re-initialize the 

mesh when the mesh quality below a threshold value, 

in this case, 0.2.  

 

2.3 Material properties 

 

    In this study, the fluid and particles in the 

simulations are water and polystyrene particles 

respectively. The density and dynamic viscosity of 

water are 1000 kg/m3 and 1.002 × 10-3 Pa∙s 

respectively. The magnetic susceptibilities of fluid 

and particle are 0 and 0.26 respectively. The density 

of particle is 1100 kg/m3. The particles used in the 

simulation have varying aspect ratios, but have the 

same volume, which is equivalent to a 7 μm-diameter 

sphere. 

 

3. Results and Discussion  

 
3.1. Validation of numerical method  

 
 

Figure 5. Comparison of the period between Jeffery’s 

theory and the FEM simulation. 
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    We first compare the results of our simulation to 

Jeffery’s theory. Figure 5 shows the period of 

rotation of Jeffery’s theory and our simulation for 

particle aspect ratio AR=4 without an applied 

magnetic field. The theoretical period of Jeffery orbit 

is 0.06675s; the period in this simulation is 0.0670s. 

The relative error is 0.37%, suggesting that this 

simulation has a remarkable agreement with the 

theory. Therefore, this simulation method has been 

validated to be sufficiently accurate to study the 

periodic rotation of particle immersed in the simple 

shear flow. 
 

3.2. The effect of magnetic field strength  

 

 
Figure 6. The effect of magnetic field strength H (A/m) on 

the rotation period and asymmetry of the particle rotation. 

The magnetic field is applied at angle strength (α=0°). 

 

In this section, we investigate the effect of 

magnetic field strength on the period and asymmetry 

of rotation of particle for aspect ratio AR=4. Figure 

6a shows that the angle of rotation, ϕ, corresponding 

to rotation time, t, with different magnetic field 

strength at the direction α=0°. It is shown that the 

rotation period increases with increasing magnetic 

field strength. Interestingly, as the magnetic field 

strength increases to a large enough value, the 

particle could not perform a complete rotation and 

reaches a steady angle. In this case, when the 

magnetic field strength is 5000A/m, the rotation 

angle stays at 63.28°. Figure 6b shows that that the 

angle of rotation, ϕ, corresponding to the 

dimensionless rotation time, t/T, with different 

magnetic field strength at the direction α=0°, where T 

is the rotation period obtained in Fig 6a. We defined 

a ratio parameter τ=T1/T to characterize the 

symmetry and asymmetry of particle rotation as 

shown in Figure 6b, where T1 is the time the particle 

rotating from ϕ=0° to ϕ=90°. So the time the particle 

rotation from ϕ=90° to ϕ=180°, T2=T-T1. When 

magnetic field strength is 0A/m, the curve is 

axisymmetric to (t/T, ϕ) = (0.5, 90°), where τ=0.5. It 

is consistent with Jeffery’s theory. However, when 

magnetic field strength is 1000A/m, the symmetry is 

broken, and τ>0.5. As the magnetic field strength 

increases, τ become larger and larger, which means 

the asymmetry of rotation becomes more 

pronounced.  

 

 

 

 

 
Figure 7. Illustration of particle rotation in the combined 

flow and magnetic fields. 

 

The rotation behavior of the particle during one 

period in the combined flow and magnetic fields at 

α=0° is illustrated in Figure 7a. Without the magnetic 

field applied, only the hydrodynamic torque acts on 

the particle and rotates in the clockwise direction. 

When the magnetic field is applied at α=0°, the 

angular velocity produced by magnetic torque, 𝝎𝑚 , 

rotates in counterclockwise direction from ϕ=0° to 

ϕ=90°, which is the opposite to the angular velocity 

produced by hydrodynamic torque, 𝝎ℎ ;  while 𝝎𝑚 

rotates in clockwise direction from ϕ=90° to ϕ=180°, 

which is the same as 𝝎ℎ. Therefore, the particle will 

τ 

(a) 

(b) 

(a) 

(b) 

(d) 

(c) 
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rotate slower, and spend more time from ϕ=0° to 

ϕ=90°, while less time from ϕ=90° to ϕ=180°, that is, 

T1>T2. That is the reason why τ>0.5 when a magnetic 

field is applied. The larger the magnetic field 

strength, the larger τ. When the magnetic field 

strength increases to a large enough value, 𝝎𝑚  will 

be equal to 𝝎ℎ in a certain angle between ϕ=0° and 

ϕ=90° and the particle will stop rotating. For 

magnetic field directed at other directions, the effect 

is illustrated in Fig 7b-d, and will be discussed 

further in the next section.  
 

3.3. The effect of the direction of magnetic field 

 

 
Figure 8. The effect of the direction of magnetic field at a 

fixed strength (H=2000A/m) on the rotational period and 

asymmetry of particle rotation. 

 

    In this section, the effect of the direction of 

magnetic field on the period and asymmetry of 

rotation of particle for aspect ratio AR=4 is 

investigated. Figure 8a shows that the angle of 

rotation corresponding to rotation time with different 

direction of magnetic field at strength H=2000A/m. 

The results show that the period of rotation at α=45° 

become longer than the period at α=0°, while the 

period of rotation at α=135° become shorter than the 

period at α=0°. The periods of rotation are almost the 

same at α=90° and α=0°. The angle of rotation 

corresponding to the dimensionless time with 

different direction of magnetic field at strength 

H=2000A/m is shown in Figure 8b. As we can see, τ 

> 0.5 when α=0°, while τ < 0.5 when α=90°. τ = 0.5 

when α=45° and 135°. The rotation behaviors of one 

period in the combined flow and magnetic fields at 

the different direction are shown in Figure 7. As we 

discussed before, the particle spend more time from 

ϕ=0° to ϕ=90°, while less time from ϕ=90° to ϕ=180° 

at α=0°. For α=90°, 𝝎𝑚  and 𝝎ℎ  have the same 

direction from ϕ=0° to ϕ=90°, while have the 

opposite direction from ϕ=90° to ϕ=180° shown in 

Figure 7b. It means that the particle spends less time 

from ϕ=0° to ϕ=90°, while more time from ϕ=90° to 

ϕ=180° at α=0°, that is, T1<T2 and τ < 0.5. For 

α=45°,𝝎𝑚 and 𝝎ℎ have the same direction from ϕ=0° 

to ϕ=45° and ϕ=135° to ϕ=180°, while have the 

opposite direction from ϕ=45° to ϕ=135° shown in 

Figure 7c. Due the symmetry of flow field and 

particle, the time spending from ϕ=0° to ϕ=45° and 

ϕ=135° to ϕ=180° are equal. At the same time, the 

time spending from ϕ=45° to ϕ=90° and ϕ=90° to 

ϕ=135° are equal. So T1=T2 and τ =0.5. The similar 

reason can explain the rotation behavior at α=135° 

shown in Figure 7d. 

 

3.4. The effect of particle aspect ratio 

 

 
Figure 9. The effect of particle aspect ratio on the 

rotational period and asymmetry of particle rotation at 

(H=2000A/m, α=0°). 

(a) 

(b) (a) 

(b) 
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    In this section, we study the effect of particle 

aspect ratio on the period and asymmetry of rotation 

of particle. Figure 9a shows that the angle of rotation 

corresponding to rotation time with different particle 

aspect ratio at H=2000A/m and α=0°. As particle 

aspect ratio increases, the period of rotation 

increases, agreeing well with the trend predicted by 

Jeffery’s theory. Figure 9b shows the angle of 

rotation corresponding to the dimensionless time with 

different particle aspect ratio at H=2000A/m and 

α=0°. It is shown that τ is always larger than 0.5 for 

different particle aspect ratio, which is consistent 

with what we discussed before. When aspect ratio 

increases, there is a slight increase for τ, which means 

that particle aspect ratio has only a marginal effect on 

the asymmetry of rotation of particle. 

 

4. Conclusions 
 

    The motion of ellipsoidal particles in a simple 

shear flow subjected to a uniform magnetic field is 

numerically investigated by a multiphysics model 

that couples magnetic field, flow field and rigid body 

motions. The magnetic field strength has a significant 

effect on the period and asymmetry of rotation of 

particle. As the magnetic field strength increases, the 

rotation period of particle increases and the 

asymmetry of rotation becomes more pronounced. 

When the magnetic field strength increases to a large 

enough value, the particle could not perform a 

complete rotation and reaches a steady angle. Further, 

the direction of magnetic field modifies both the 

period and asymmetry of rotation of particle. Placed 

at 45°, the direction of magnetic field shortens the 

period of rotation, while at 135° it increases the 

period. The symmetry of particle rotation is 

preserved for magnetic fields placed at 45° and 135°. 

The magnetic field, when directed at 0° and 90°, 

causes the asymmetry of rotation. For particle aspect 

ratio, the results show that it changes the period of 

rotation of particle, which is consistent with Jeffery’s 

theory, but has a subtle effect on the asymmetry of 

particle rotation. 
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