COMSOL CONFERENCE 2017 ROTTERDAM

Topology Optimization of a 3D-printed Acoustic Chamber For Photoacoustic Spectroscopy with COMSOL Multiphysics[®]

by RACHID HAOUARI PhD Candidate

ເມງອ

OVERVIEW STRUCTURE OF THIS PRESENTATION

- Principles of photoacoustic spectroscopy
- What is topology optimization ?
- Problem definition and simulation set up
- Results, comparison and confirmation
- Conclusion

PHOTOACOUSTIC SPECTROSCOPY

BASIC PRINCIPLES OF GASEOUS PHOTOACOUSTIC SPECTROSCOPY AND MAIN ADVANTAGE

ເກາec

SIGNAL IMPROVEMENT DESIGN CONSIDERATIONS TO PUSH FURTHER THE DETECTION LIMIT

Pressure response of a PAS cell

$$p = K_{geom} \frac{(\gamma - 1) L Q}{\omega V} \alpha P_L$$

Pressure @ microphone p L Laser path length V Cell volume Q Quality factor of the cell Frequency of operation *(*1) Analyte absorption coefficient α P_L Laser power γ Buffer gas constant ratio

Ways for improvement

- Downsizing (V)
- Multiple laser beam crossing (mirrors) (L)
- Noble gas as a buffer (γ)
- Higher laser power (P_L)

K_{geom} Geometry of the cell ?

CAN WE SIGNIFICANTLY IMPROVE THE RETRIEVED SIGNAL BY JUST TAILORING THE CELL SHAPE ?

SIMULATION OF THE PHOTOACOUSTIC EFFECT DESCRIPTION OF BOUNDARY CONDITIONS

Use Thermoacoustic module to take into account thermal and viscous losses

Harmonic excitation \Rightarrow Frequency domain study

- Gaussian radial repartition of heat power = laser heating
- Air bulk modulus : 17 µPoise
- Boundary layer = $max(d_{th}, d_{visc})$

IMPACT OF THE CELL SHAPE ALL SHAPES FIT A I CM³ VOLUME

PURPOSE OF TOPOLOGY OPTIMIZATION CONFERENCE 2017 ROTTERDAM FIND THE BEST SHAPE OPTIMIZING ITS FUNCTION WHILE COMPLYING TO A SET OF CONSTRAINS

Bridge

- <u>Function</u> : withstands the weight
- <u>Constrains</u> :
 - o limited amount of material
 - o light

MATERIAL DEFINITION

THE OPTIMIZED SHAPE IS AN OPTIMISED DISTRIBUTION OF A MATERIAL PROPERTY

 $\zeta(\mathbf{r}) \neq \begin{cases} 1 & \text{if material 1} \\ \zeta_{Q}([0; 1]_{material 2}) \end{cases}$

We are looking for material distribution

q penalization parameter : pushes toward 0 or I $\zeta(r)^q$

Material property will depend on the position

SIMP model

(Solid Isotropic Material with Penalization)

$$\rho(\mathbf{r}) = \rho_{mat1} + \zeta(\mathbf{r})^q \left(\rho_{mat2} - \rho_{mat1}\right)$$

over Ω

PENALIZATION FUNCTIONS SET OF FUNCTIONS TO FORCE THE CONVERGENCE TOWARD DESIRED SOLUTIONS

Heaviside projection

- Slow convergence of ζ values toward 0 & I
- Gradient based optimization techniques \Rightarrow continuous function $\zeta_P = P(\zeta)$

COMSOL CONFERENCE 2017 ROTTERDAM

Penalized damping = Pamping

- \sim no sound in the solid (impedance mismatch)
- \Rightarrow artificial damping
- damping coefficient $\alpha \left(P(\zeta(\mathbf{r})) \right) = \begin{cases} 0 & \text{if air} \\ K \gg 1 & \text{if solid} \end{cases}$

REGULARIZATION SMOOTHING TECHNIQUE OF THE SOLUTION

Solution presents a checkboard pattern

BC : convenient to set material on desired boundaries

COMSOL

2017 ROTTERDAM

OBJECTIVE AND CONSTRAINS DEFINITION SETTING UP THE GEOMETRY AND OBJECTIVES FOR OPTIMIZATION

Constrains

- Relative positioning
- Guaranteed acoustical path
- Amount solid in $\boldsymbol{\Omega}$

$$0 < k_{down} \le \frac{\int_{\Omega} \zeta \, dV}{V} \le k_{up} < 1$$

COMSOL

2017 ROTTERDAM

KU LEUVEI

Maximize the average pressure retrieved @ microphone

Objective

$$\max! \int_{mic} |p|^2 \, dS$$

ເງຍ

12

ເກາຍc

BOUNDARY CONDITIONS SCHEMATIC VIEW AND PARALLEL BETWEEN BC AND MATERIAL TOPOLOGY

Dirichlet BC for air : $\tilde{\zeta} = 0$

COMSOL[®] IMPLEMENTATION KEY VARIABLES AND PARAMETERS TO BE IMPLEMENTED

ເງຍອ

KU LEUVEN

COMSOL

CONFERENCE 2017 ROTTERDAM

OPTIMIZED CHAMBER @ 25 kHz MICROPHONE LOCATION SET @ THE CENTRE

0.9

0.8

0.7

0.6

0.5

0.3

0.2

0.1

z y x

OPTIMIZED CHAMBER @ 25 kHz MICROPHONE LOCATION SHIFTED FROM THE CENTRE

COMPARISON BETWEEN PAS CELLS CRITERIONS TO COMPLY TO MAKE CORRECT COMPARISONS OF TWO CELLS

Pressure response of a PAS cell

$$\frac{p}{QK_{geom}} \frac{(\gamma - 1) L Q}{\omega W} \frac{\alpha R_{PL}}{\omega W}$$

2 PAS cells are equivalent if they have the same

- Volume V
- Laser path length L
- Buffer gas γ
- Absorbed laser power αP_L

The rest is shape dependent

CONFIRMATION OF SIGNAL IMPROVEMENT THANKS TO TOPOLOGY OPTIMIZATION

COMPARISON OF SIMULATED PHOTOACOUSTIC SIGNAL FROM TWO CELLS

CONCLUSION

- Topology optimization of PAS cell was undertaken
- Building and setting up the COMSOL model
- Definition of equivalency between cells for improvement signal assessment
- Comparison and confirmation of improved signal simulated

COMSOL MULTIPHYSICS

COMSOL CONFERENCE 2017 ROTTERDAM