

MultiPhysics Analysis of Trapped Field in Multi-Layer YBCO Plates

Dr. Philippe J. Masson

Advanced Magnet Lab pmasson@magnetlab.com

Boston, MA – October 9th, 2009

- What are Trapped Flux Magnets (TFM)
- Applications of Trapped Flux Magnets
- Performance of bulk YBCO TFM
- Principle of flux trapping
- Modeling superconducting material
- Definition of the problem
- Implementation in COMSOL
- Simulation results

- Advanced Magnet La
- Superconductors exhibit a non-measurable electrical resistance when operating below a critical surface (J, B, T)
- Lenz' law states

$$e = -\frac{d\phi}{dt}, e = \rho.j$$

$$\stackrel{=0}{\implies} \phi = \iint_{S} \vec{B} d\vec{S}$$

is constant

Trapped flux magnets: YBCO single grain 17 T @ 29 K Constant magnetic flux Permanent magnets: NdFeB, SmCo... < 1 T @ room temperature Contant magnetization

Magnetization of a Superconductor

Lenz law $\mu_{o} M (T)$ Critical state model - $J = O \text{ or } \pm J_c$ 0,4 0,2 $\mu_0 H_1$ 0 -0,2 H_{e} $\mathbf{H}_{\mathbf{e}}$ -0,4 0,2 0,8 0,4 0,6 () $\mu_{o}H_{ext}(T)$

- Field cooling
 - Cool down of the superconductor under applied field
 - Very effective
 - Require large magnets providing Btrapped
- Zero field cooling
 - Requires full saturation in current
 - Require large magnets providing at least 2*Btrapped •
- Pulsed magnetization
 - Require energy storage for pulse generation
 - Generates losses in the superconductor (flux flow)
- Flux pumping
 - Complex to set up
 - Requires controllable temperature and magnetic gate material

• Flux Trapping up to 17 Tesla at 30K !

NATURE |VOL 421 | 30 JANUARY 2003

Applications of Trapped Flux Magnets

- High power density rotating machines
 - Challenges: trapping the flux
 - Not very scalable
 - Very high excitation field
- Magnetic bearings (Flywheels)
 - Intrinsically stable
 - No control required

FSU-CAPS/NASA

Equations to solve:

For a given operating temperature:

Bean's model 5.00E-04 4.50E-04 4.00E-04 3.50E-04 3.00E-04 (m/v) 2.50E-04 ш 2.00E-04 1.50E-04 1.00E-04 5.00E-05 0.00E+00 50 70 90 110 130 150 I (A)

Valid Maxwell's equations:

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
$$\vec{\nabla} \times \vec{B} = \vec{j}$$

Magnetic behavior:

 $\vec{B} = \mu_0 \vec{H}$

YBCO Bulk Material Properties

Why Multilayer FTM

• Bulk material

- Ceramic material
- Structural limits (forces on vortexes)
- Problem to grow large grains
- Multilayer configuration
 - Deposition of films (proved technology)
 - Stack more stable mechanically (better pinning)
 - Lower packing factor but higher current density
- Need to evaluate the configuration through numerical analysis
 - Flux trapping capability
 - Stability against thermal disturbances

Model Implemented for YBCO

Electrical conductivity model: Non-linear with strong dependence upon E, T and B

$$\sigma[S/m] = \frac{J_{c0}}{E_c} \left(1 - \left(\frac{T}{T_c}\right)^2\right)^{\frac{3}{2}} \left(\frac{1}{1 + \frac{B}{B_0}}\right) \left(\frac{E}{E_c}\right)^{\frac{1}{n}}$$

Permeability of vacuum: $\mu_r = 1$

Geometry Implemented

Thermal Model

Electromagnetic Model

- Linear variation of current density in field coil
- Non linear electrical conductivity in superconductor

quation $\frac{1}{2} A/\partial t + \nabla \times (u_{-1}^{-1} u_{-1}^{-1} \nabla x)$	$(\mathbf{A}) = (nV, 12nr + 1^{e})\mathbf{e}, \mathbf{A} = \mathbf{A}$				*	*		÷	*
bdomains Groups	Physics Infinite Elements Forc	°φ es Init Element Color		_	÷	•	•		
unnamed1) unnamed2) unnamed3) ame:	Library material: Quantity Value/Express V_{loop} 0 J^e_{cp} 0 σ 0.00001+(T<91 $H \leftrightarrow B$ $B = \frac{0.00001+(1}{0^{e_{p}}r})$ μ_r 1	Load Load V A/m ² A/m ² (Description Loop potential External current density Electric conductivity 92/^2)/~(3/2)*1e4*((no 20/^2)/~(3/2)*1e4*((no 20/~2)/~(3/2)*1e4*((no	prmE_emqa+1e-11)/1	e-4)^(1/8-1)*	(1/(1+normb	8_emqa/1.3		
		OK Cancel	Apply	telp					

Mesh

- Coarse mesh in air and in the field magnet
- Fine mesh in the multilayer system
- ~ 80,000 elements
- Number of d.o.f. ~305,000

Simulation

Simulation Results

• Field variation of about 7% after heat pulse is applied

Heat Loads

- Heat pulse in heater
 - peak at 14 W
 - ~18 J

- Losses in superconductor
 - Peak ~0.6 mW
 - ~2 mJ
 - Depends on speed of flux variation

• In case of a large heat pulse trapped flux is dissipated

• All the energy is dissipated at the beginning of the heat pulse

AML - PJM - 09/02/2009

Heat Loads

- Heat pulse in heater
 - peak at 15 W
 - ∼20 J

- Losses in superconductor
 - Peak ~0.22 W
 - ~ 20 mJ
 - Depends on speed of flux variation

Conclusion

- Multilayer TFMs are very promising
 - Remove existing limitations of bulk material
 - Allow for larger size
- Comsol allows for a better understanding of the physics of TFMs
- Comsol was able to handle the challenging simulation
 - Highly non linear problem
 - Electrical conductivity depending non-lineraly on E
 - Non linear thermal properties
 - Electromagnetics-thermal coupling