Numerical Study of the Electrical Properties of Insulating Thin Films Deposited on a Conductive Substrate

Surajit Kumar and <u>Rosario A. Gerhardt</u> School of Materials Science and Engineering Georgia Institute of Technology Atlanta, GA 30332-0245

Introduction

- COMSOL Multiphysics was used to calculate the impedance/dielectric response of thin films attached to conducting substrates.
- In this presentation, we describe:
 - Models used
 - Effect of film thickness
 - Effect of electrode contact

Important relationships

- Impedance Z = 1/Y = Z' jZ''
- Admittance Y = 1/Z = Y' + jY''
- Capacitance $C = C' + jC'' = (Y''+jY')/\omega$
- Utilized Time Harmonic-Electric Current solver in the AC/DC module of COMSOL 3.4:

$$\nabla \cdot \left(\varepsilon - j\frac{\sigma}{\omega}\right) \nabla \widetilde{V} = \nabla \cdot \left(\widetilde{\varepsilon} \nabla \widetilde{V}\right) = 0$$

 To calculate the impedance and capacitance, one of the electrodes was made a port and the other was made a ground

Models Used

Air Port electrode Film

Ground electrode

2D (full) model schematic

2D (simplified) model schematic

More details about the models

Typical 2D (full) model

Typical 2D (full) mesh

Evaluated Parameters

Model	t _{film} (nm)	σ _{film} (S/m)	t _{substrate} (μm)	σ _{substrate} (S/m)	d _{electrode} (µm)
2D (full)	10, 50, 100, 500, 1000	10-13	500	100	3
2D (simplified)	10, 50, 100, 500, 1000	10 ⁻¹³	NA	NA	3
Axisymmetric (simplified)	100	10 ⁻¹³	NA	NA	3, 30, 300

Results for two different film thicknesses

t = 1000 nm

t = 10 nm

Effect of Film Thickness (Z) on Insulating Film

Bode plot of Z'

Bode plot of -Z"

- Air thickness ~ 500 μ m, air conductivity = 1x10⁻¹⁴ S/m.
- $t_{film} = 10$ to 1000 nm, $\sigma_{film} = 1 \times 10^{-13}$ S/m.
- + t_{Si} = 500 µm, σ_{Si} = 100 S/m, $d_{electrode}$ = 3 µm
- Z' does not change much.
- -Z" shows increasing trend with film thickness.

Effect of Film Thickness (C) on Insulating Film

Bode plot of C'

Bode plot of C"

- Air thickness ~ 500 μ m, air conductivity = 1x10⁻¹⁴ S/m.
- $t_{film} = 10-1000 \text{ nm}, \sigma_{film} = \frac{1 \times 10^{-13} \text{ S/m}}{\text{ S/m}}.$
- \cdot t_{Si} = 500 $\mu\text{m},\,\sigma_{Si}\,$ = 100 S/m, d_{electrode} = 3 μm
- · C' shows decreasing trend with film thickness.
- C" also shows decreasing trend with film thickness, and curvatures are seen.

Comparison for the different linear models

Axisymmetric Models

Effect of Electrode Size - Axisymmetric Models (Z)

Bode plot of Z'

Bode plot of -Z"

- Pad diameters, 3 μ m, 30 μ m, 300 μ m.
- Air thickness ~ 500 μ m, air conductivity = 1x10⁻¹⁴ S/m.
- Film thickness = 100 nm, film conductivity = 1×10^{-13} S/m.
- Si thickness = 0 um (Bottom electrode present).
- Impedance values do change as the size of the electrode is changed from small to large.

Effect of Electrode Size - Axisymmetric Models (C)

Bode plot of C'

Bode plot of C"

- + Pad diameters, 3 μm , 30 μm , 300 μm .
- Air thickness ~ 500 μ m, air conductivity = 1x10⁻¹⁴ S/m.
- Film thickness = 100 nm, film conductivity = 1×10^{-13} S/s
- Si thickness = 0 um (Bottom electrode present).
- · Capacitance values almost the same as for simple parallel plate capacitor.

4.5

1.5

d _{electrode} (µm)	C' _{formula} (F)	C' _{axisymmetric} (F)	$egin{pmatrix} C'_{simplified} - C'_{formula} \ C'_{formula} \ \end{pmatrix} \ egin{pmatrix} 0 \ \end{pmatrix} \end{pmatrix}$			
3000	2.441×10 ⁻⁹	NA	NA			
300	2.441×10 ⁻¹¹	2.444×10 ⁻¹¹	0.14			
30	2.441×10 ⁻¹³	2.468×10 ⁻¹³	1.10			
3	2.441×10 ⁻¹⁵	2.656×10 ⁻¹⁵	8.82			

Conclusions

- Numerical simulations using COMSOL were used to model the electrical response of insulating thin films as a function of film thickness and electrode contact size
- The full and simplified models showed very little error when the films are very insulating

($\sigma_{\text{film}} \sim 10^{-13}$ S/m as for SiO₂) and the substrate is highly conductive ($\sigma_{\text{Substrate}} \sim 100$ S/m as for Si).

The errors on the measured capacitance were shown to increase when the edge effects became dominant. This occurred as a function of increasing film thickness and as a function of decreasing electrode contact size as expected from ASTM D150 standards.

Acknowledgements

 Funding from the U.S. Department of Energy Basic Energy Sciences under contract DE-FG02-03-ER46035

