COMSOL CONFERENCE 2018 BOSTON

Generation of Divergence-Free Bessel-Gauss Beam from an Axicon Doublet for km-long Collimated Laser

Sirawit Boonsit^{1,2}, Panuwat Srisamran^{1,2}, Pruet Kalasuwan^{1,2}, Paphavee van Dommelen^{1,2} and Chalongrat Daengngam*

October 4th, 2018

NanoPhotonics

¹Department of Physics, Faculty of Science, Prince of Sonkla University, Songkhla, Thailand

²Thailand Center of Excellence in Physics, Commission on Higher Education, Bangkok, Thailand

Vermont Cerit HER Marker AL CONTRACTOR Ination

HSIPAGE BRETENER HERE TO B

Beam divergence

3

Nibby Williams, ST Laserstrike 2017

Objective

> To perform finite-element simulation to study effect of compound axicon parameters and beam waist radius on the propagation distance of the Bessel-Gauss in comparison to normal Gaussian beam.

Equation of Gaussian beam Amplitude factor

Equation of Bessel beam

 $E_B(x,y) = E_{B0} J_{\nu}(k_x x) e^{-ik_y y}$

where $J_v(k_x x)$ is Bessel function of the first kind

Equation of Bessel-Gauss beam

$$E_{BG}(x,y) = E_0 J_0(k_x x) \frac{w_0}{w(y)} e^{-\frac{x^2}{w^2}} e^{-i\phi}$$

CROSS SECTION

Gaussian beam profile

Bessel-Gauss beam profile

Axicon

Choose the module

13

Finite element method (FEM)

Define parameters

Variable	Expression	Description
W	0.532 μm	Wavelength
w ₀	25 mm	Beam waist
Ep	0.150 J	Laser Pulse energy
t _p	6 ns	Laser pulse duration

14

parameters of YAG laser

Propagation constant

2.000

1.600

$$\beta_1 = \pi - \left(\frac{\pi}{2} - \alpha_1\right) - \left(\frac{\pi}{2} + \gamma_1\right)$$
$$k = k_x + ky = ksin\beta_1 + kcos\beta_1$$

Section I

-Sweep the parameter n_3 (the interlayer refractive index) from 1.573-1.580 and find the optimum n_3 .

<u>Result I</u>

Effect of n_3 on longitudinal intensity of Bessel-Gauss beam with $w_0 = 25$ mm

Section II

-Using the result from sec.I to contribute a Bessel-Gauss beam and compare to normal Gaussian beam with the same beam waist.

Section III

-Sweep the waist diameter input of the beam from 10-25 mm.

Effect of input beam waist on longitudinal beam intensity of a produced Bessel-Gauss beam

Conclusions

- ✓ It is possible to generate a Bessel-Gauss beam by using numerical method from COMSOL[®] program.
- ✓ For an input beam waist 25 mm , a compound axicon can generate a beam output that can be delivered over a distance at least 2 km.

Future work

□ Need to compare the results with the experiment.

Acknowledgements

- Assist. Prof. Dr.Chalongrat Daengngam Ph.D
- NanoPhotonics Research Group
- Development and Promotion of Science and Technology Talents Project (DPST)
- Department of Physics, Faculty of Science, Prince of Songkhla University
- COMSOL ® Multiphysics

NanoPhotonics

Complete Install

Thank You

$$n_g = 1.7$$

FOR
$$\gamma_1 = 1.0^\circ$$

 $\gamma_2 = 0.5^\circ$

 $n_g = 1.7$

×10⁷

mm

^{mm}300

-5

FOR
$$\gamma_1 = 0.5^\circ$$

 $\gamma_2 = 1.0^\circ$

Figure 3.3 (b) Direction of the beam from a single axicon

First, we use Snell's law to calculate for refracted angle θ_1 .

Hence, the value of $\theta_1 = sin^{-1}(n_a sin(\gamma_1))$ $\theta_1 = sin^{-1}(1.52sin(1.74e^{-4}rad)) = 2.62e^{-4}rad.$

We define the propagation constant when the beam pass through the axicon:

Then we calculate the refracted angle (θ_1) with respect to the y-axis (β_1) by using mathematics on geometry. After that, we obtained the angle of the beam:

$$\beta_1 = \pi - \left(\frac{\pi}{2} - \theta_1\right) - \left(\frac{\pi}{2} + \gamma_1\right) = 8.73e^{-5}$$
rad.

 $k = k_x + k_y = k \sin\beta_1 + k \cos\beta_1.$

For the total power of the Gaussian beam across an arbitrary plane at z,

$$P = 2nc\epsilon_0 \iint E \cdot E^* dA$$

$$P = 2nc\epsilon_0 \frac{w_0^2 E_0^2}{w^2(z)} \int_0^{2\pi} \int_0^{\infty} e^{\left(-\frac{2r^2}{w^2(z)}\right)} r dr d\theta$$

$$P=2nc\epsilon_0\frac{\pi w_0^2}{2}E_0^2,$$