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Enabling Li-ion Battery Fast Charge?
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“Range Anxiety” Fast Charge



Challenges of Fast Charge
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Fast Charge

High temperature Thermal runawayHeat generation

SEI growth Degradation / Capacity fade

Li plating



Charging Strategy Review
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 Constant Current Constant Voltage (CCCV) Charging 

A123 26650 LFP Cell Data



Charging Strategy Review
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• Decrease charging time
• Low temperature rise
• High charging efficiency

 Multistage Constant Current Charging (MCC) (Vo et al. 2014)

Source: T.T. Vo, X. Chen, W. Shen, A. Kapoor, New charging strategy for lithium-ion batteries based on the 
integration of Taguchi method and state of charge estimation, J. Power Sources 273 (2015) 413-422



Objective
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• To study the effect of charging protocol on capacity fade and 

thermal behavior by developing an electrochemical-thermal-

capacity fade coupled model

• To optimize the charging protocol based on Dynamic 

Programming optimization algorithm



Methodology
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Methodology
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Model Validation
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A123 2.3 Ah LFP 26650

MACCOR system 4200

Battery test equipment

Source: T.T. Vo, X. Chen, W. Shen, A. Kapoor, New charging strategy for lithium-ion batteries based on the 
integration of Taguchi method and state of charge estimation, J. Power Sources 273 (2015) 413-422



15 minutes / 20% ~ 80% SOC Fast Charging Protocols
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Impact of Cycle Number and Protocol on Capacity Fade
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• Low-High charging protocols obtain lower capacity fade than High-Low protocols
• The 2-step Low-High protocol results in the lowest capacity fade 



Dynamic Programming (DP) Optimization
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Operating Conditions:
 Charging SOC = 0% ~ 80%
 Charging time = 30 mins
 ∆𝑡 = 10 mins
 Charging step = 3
 Charging current 

= 0.96C, 1.92C, 2.88C
 ∆SOC = 16% (0.96C)

Goal:
 m𝒊𝒏 𝑻(𝟑𝟎𝒎𝒊𝒏, 𝟖𝟎%)

Constrains:
 𝑻 < 𝑻𝒎𝒂𝒙, 𝒄𝒆𝒍𝒍

 SOC < 80%

𝑻, 𝒕, 𝑺𝑶𝑪𝒊
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𝑻, 𝒕, 𝑺𝑶𝑪𝒊, 𝑺𝑶𝑪𝒊−𝟏
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Compare
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𝑻, 𝟑𝟎𝒎𝒊𝒏, 𝟖𝟎%,64% 



Capacity Fade Optimization
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SEI Potential Optimization

14



Temperature Rise Optimization

15



Optimization at Different Ambient Temperatures
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Conclusions
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• An electrochemical-thermal-capacity fade coupled model for a Li-ion 
battery cell is developed using COMSOL Multiphysics

• The effect of fast-charging protocol on capacity fade with charging-
discharging cycles is studied

• A Dynamic Programming Optimization algorithm is developed using 
COMSOL Livelink - MATLAB to optimize the fast charging protocol

• The cost function include capacity fade, SEI potential, and temperature 
rise.
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Enabling Li-ion Battery Fast Charge?
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1% market share

• Cost
• “Range anxiety”

Fast charging Li-ion batteries …



Typical Lithium Ion Cells
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 Coin/Button Cell

 Cylindrical Cell

 Prismatic Cell

 Pouch Cell
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Typical Lithium Ion Battery Models
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P2D Electrochemical Model
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Thermal Model

24



Capacity Fade Model
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Source: Ekström, Henrik, and Göran Lindbergh. "A model for predicting capacity fade due to SEI formation in a 
commercial graphite/LiFePO4 cell." Journal of The Electrochemical Society 162, no. 6 (2015): A1003-A1007.

• In addition to the main graphite-lithium intercalation reaction on the negative electrode, 
the parasitic lithium/solvent reduction reaction is also included in the model:



15 min 20 ~ 80% SOC Fast Charging Cycles
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SEI Thickness Increase Cycle 1 – Cycle 3
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• SEI increases with cycles
• Low-High protocols have thinner SEI at cycle 3

Low-High

High-Low



Impact of Cycle Number and Protocol on Capacity Fade
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• Low-High charging protocols obtain lower capacity fade than High-Low protocols
• The 2-step Low-High protocol results in the lowest capacity fade 
• Utilization range shifts in the negative electrode



Optimization at Different Ambient Temperatures
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