

Simulation of thermal breakdown in a multi-layered stack of dielectric elastomers

Line Riis Christensen, Ole Hassager, and Anne Ladegaard Skov Danish Polymer Centre, DTU Chemical Engineering, 2800 Lyngby, Denmark

DTU Chemical Engineering Department of Chemical and Biochemical Engineering

DTU

Background - What is dielectric elastomers?

Background - Electric breakdowns

Thermal breakdown occurs due to a thermal runaway.

Temperature is increased due to Joule heating, as stated by Joules law:

$$Q = \frac{V^2}{R} = E^2 \sigma N \, d \, A$$

- Q = Generated heat
- V = Applied voltage
- R = Resistance
- E = Electrical field
- σ = Electrical conductivity
- N = # of layer in DE
- d = height of single layer
- A =Cross-sectional area

Setup - Geometry

Setup – Materials

Elastomer:

- PDMS elastomer (Elastosil RT625)
- Constant relative permittivity: $\epsilon_{r,PDMS} = 2.8$
- Constant thermal conductivity: $k_{\text{PDMS}} = 0.15 \frac{\text{W}}{\text{mK}}$
- Electrical conductivity: $\sigma_{Arr}(T) = \sigma_{0,Arr} \exp(-\beta_{Arr}/T)$
- Yeoh material model for stress-strain behaviour¹

¹ Kuhring et al. *Finite Element Analysis of Multilayer DEAP Stack-Actuators,* Proc. SPIE, 9430 (2015)

5 DTU Chemical Engineering, Technical University of Denmark

Setup – Physics

Parameter study – Radius

Parameter study – Applied voltage

8 DTU Chemical Engineering, Technical University of Denmark

Parameter study - Thickness

Parameter study – Temperature of surroundings 🧮

Heat transfer: $h(T) = h_{const}(T - T_0)^{1/4}$

24 October 2018

10

Conclusion

- The thermal breakdown of a multi-layered stack of dielectric elastomers has successfully been simulated using:
 - The **joule heating** multiphysics module
 - The **electromechanical** multiphysics module
- It has been found that when including **electromechanical** deformation to the Joule heating simulations, the N_{BD} is **decreased in all cases**
- A parameter study has been performed
 - Increasing **r** leads to a **decrease** in N_{BD} , approaching the value obtained with thermal insulation
 - Increasing V_o leads to a decrease in $\mathsf{N}_{\text{BD}}.$ The effect of varies material models will be examined.
 - Increasing d_0 leads to a **increase** in N_{BD}, because the decrease in E has bigger impact than the increase in d.
 - Increasing T_0 leads to an decrease in N_{BD} , due to limitation in the driving force for heat transfer.

Acknowledgements

Thank you for your attention

Setup - Electromechanics

DTU

9

Setup – Joule heating

Step 1: Constant temperature on top and bottom, Thermal insulation on the cylindrical surface Step 2: Heat transfer functions on top and bottom, Thermal insulation on the cylindrical surface Step 3: Heat transfer functions on all surfaces

14 DTU Chemical Engineering, Technical University of Denmark

Effect of heat transfer – Joule heating

