
 

Controlling the effective bending stiffness via out-of-plane 

rotational resonances in elastic metamaterial thin plates 

  

Jinjie Shi, 1Chenkai Liu,1 and Yun Lai2,1,* 
1College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of 

Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, Jiangsu, 

People’s Republic of China  
2National Laboratory of Solid State Microstructures, School of Physics, and Collaborative 

Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, 

Jiangsu, People’s Republic of China 

E-mail: laiyun@nju.edu.cn 

Keywords: elastic metamaterial plate, bending stiffness 

  

Abstract 

In this work, we investigate the effective parameters of elastic metamaterial thin plates. We 

find that the out-of-plane rotational resonances can lead to a resonant behavior in the effective 

bending stiffness of metamaterial thin plates, which provides a route to tune the effective 

bending stiffness independently, from positive to negative values, and even infinity. By using 

resonant frequency analysis for metamaterial plates with different sizes, we have verified the 

resonant nature of the effective bending stiffness. Moreover, by designing a new type of 

elastic metamaterial plate with enhanced moment of inertia, we demonstrate a convenient way 

to tune the frequency regime of negative bending stiffness to overlap with that of negative 

mass density, and thus realize a band of negative group velocity. With the effective mass 

density and bending stiffness being independently tunable, the resonance properties of the 

elastic metamaterial thin plate can be engineered efficiently. Our work demonstrates a unique 

approach for manipulating flexural waves in elastic metamaterial thin plates. 

 

Introduction 

In the past few decades, metamaterials have been extensively investigated due to their 

unprecedented capability to control the propagation of electromagnetic, acoustic, and elastic 

waves. Metamaterials homogenized as effective media can exhibit exotic effective material 

parameters far beyond natural materials. For acoustic and elastic metamaterials, exotic 

parameters have been widely investigated, such as negative mass density [1-5], negative bulk 

modulus [6-8], negative shear modulus [9], extreme anisotropy [10-13], hybrid properties 

[14-16], etc. These unprecedented properties give rise to novel phenomena and applications 

such as low-frequency blocking [17,18], negative refraction [19-21], cloaking [22-28],    

perfect absorption [29-34], acoustic impedance matching effect [35], mode conversion [9,36] 

and topological effects [38-40], etc. The development in acoustic and elastic metamaterials 

significantly enriches the physics and may have important implications in acoustics, structural 

mechanics, architecture, seismology and other disciplines in the future. 

Interestingly, in special geometric bodies composed of elastic metamaterials, such as 

metamaterial beams or metamaterial plates, some new phenomena absent in the bulk elastic 



 

metamaterials may appear. For instance, in a recent experimental study on a beam structure 

composed of elastic metamaterials [15], besides the unusual transmission behaviors such as 

forbidden transverse or longitudinal waves, which also exist in bulk media [14], a unique 

vibrational property denoted as the torsional band gap was also observed, which is a unique 

phenomenon in the beam geometry. For flexural waves in elastic thin plates, the most 

important parameter besides the mass density per area m  is the bending stiffness D  (also 

denoted as flexural rigidity). The wave equation of the flexural waves in elastic thin plates is  
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Here, w  is the deflection of the thin plate. For a homogeneous elastic thin plate, the bending 

stiffness can be obtained as 
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, in which E  is the Young’s modulus,   is the 

Poisson’s ratio of the material and h  is the thickness of the thin plate. Therefore, in previous 

researches on elastic metamaterial thin plates, the tunability of the bending stiffness is usually 

controlled by changing the Young’s modulus [22,41-46]. However, since in the beam 

configuration, the bending stiffness is defined as D EI , where I  is the second moment of 

area of the beam's cross-section, which is related to the moment of inertia. This indicates that 

engineering the moment of inertia of metamaterial may give another approach for efficiently 

controlling the effective bending stiffness of the thin plate. 

In this work, we investigate the effective parameters of elastic metamaterial thin plates. The 

elastic metamaterial thin plate with its unit cell structure is showed in Fig.1. Such a 

membrane-mass structure is known for exhibiting negative effective mass density due to 

dipolar resonances [5]. Interestingly, we show that the effective bending stiffness of the thin 

plate can be controlled independently and efficiently, by tuning the out-of-plane rotational 

resonance instead of the dipolar resonance, because such rotational resonances can lead to 

resonant behaviors in the effective moment of inertia. In order to prove this argument, we 

have performed resonant frequency analysis for elastic metamaterial thin plates with different 

sizes. Indeed, we observe a resonant behavior in the effective bending stiffness, which can 

vary from positive to negative values and even approach infinity. The resonant frequencies 

can thus be efficiently predicted and controlled by the effective parameters. In a second 

example, we have replaced the central steel plate with platinum cylinders with a suitable 

length. As a result, the out-of-plane rotational resonance is significantly enhanced and the 

frequency regime of negative bending stiffness is shifted lower to overlap with the regime of 

negative mass density. A negative band is realized due to double negativity. Our work 

demonstrates an efficient and systematic method to control the effective bending stiffness via 

out-of-plane rotational resonances instead of modulus. With the effective mass density and 

bending stiffness both being independently controllable, advanced manipulation of flexural 

waves in elastic thin plates is thus possible. 

  



 

Results 

 

 

 

 

Fig. 1. Illustration of the elastic metamaterial thin plate and its unit cell. 

 

Without loss of generality, we consider a membrane-mass-type thin plate, as shown in Fig.1. 

The plate is composed of a square lattice of metamaterial units. The unit cell is an epoxy thin 

plate embedded with a circular membrane of silicone rubber and a circular plate of steel 

which is placed at the center of the membrane. The lattice constant is set to be 5cma  . The 

steel plate has a radius of 
1 1cmr  . The outer radius of the rubber membrane is 2 1.5cmr  . 

The three components have the same thickness of h=0.5cm. The thin plate lies in the xy-plane 

with its normal direction defined as the z-axis. The material parameters are taken to be mass 

density � =7850 kg m-3, the Young’s modulus � = 180GPa, Poisson ratio � = 0.25 for the steel; 

� =1245 kg m-3, E=3.3Mpa, �=0.477 for the silicone rubber; and � =1130 kg m-3, E=3.8Gpa, 

�=0.35 for the epoxy. 

 



 

 

Fig. 2. The band structure and the field distributions of the metamaterial thin plate for some 

specific eigenstates. (a) The band structure of the elastic metamaterial thin plate. Black (Red) 

curves highlight the z-polarized (y-polarized) shear waves, respectively. Blue curve represents 

the longitudinal branch. Green curves show the resonant modes (RMs). The band gaps for 

z-polarized modes are marked in Grey. (b) The band structure of the metamaterial without the 

RMs. The proposed unit cell is showed in the lower right corner of Fig. 2(b). Here, two 

z-polarized shear bands are marked by black curves. Red/blue curve represents the 

y-polarized shear/longitudinal branch. The dark grey region are z-polarized shear bandgap. (c, 

d, e, f) The field distributions of the y-, x-, and z-polarized RMs (f=620Hz, f=621Hz and 

f=684Hz) at the Г point, and the eigenfield of the hybridized mode (f=599Hz) at 0.9xk a   , 

which is composed of y-polarized out-of-plane RM and z-polarized shear mode, respectively. 

Here, arrows indicate displacements and color indicates amplitude (red for large and blue for 

small). 

 



 

We first calculate the band structure for such a metamaterial thin plate with infinite size. In 

Fig. 2(a), the solid line dispersion curve is numerically calculated by finite element analysis 

with commercial software COMSOL Multiphysics. We observe the following phenomena 

from Fig. 2(a). Firstly, there are two bulk shear branches (red and black curves), the other one 

is a longitudinal branch (blue curve). The y-polarized shear and longitudinal branches have 

linear dispersions, but the z-polarized shear branch has a quadratic dispersion in the 

quasi-static limit, which is consistent with the elastic theory of thin plates. Secondly, there are 

two band gaps for the z-polarized shear branch. The larger gap (337Hz-546Hz) and the 

smaller gap (600Hz-620Hz) are both marked in dark grey. Thirdly, besides the shear and 

longitudinal branches, there exist three resonant modes (RMs) (green curves) in the band 

structure. As we shall demonstrate, the y- and x-polarized out-of-plane RMs are important in 

controlling the bending stiffness of the thin plate. 

The field distributions of the RMs at the Г point are plotted in Figs. 2(c)-(f), respectively. 

Here, the color represents the amplitudes of displacements (blue/red for small/big values) and 

the arrows show the displacement vectors directly. The eigenstates in Fig. 2(c) (f=620Hz), Fig. 

2(d) (f=621Hz) and Fig. 2(e) (f=684Hz) correspond to RMs whose rotational axes are the 

y-axis, x-axis and z-axis, respectively. Fig. 2(f) (f=599Hz) represents hybridized mode at

0.9xk a   , which is composed of y-polarized out-of-plane RM and z-polarized shear mode. 

As we have pointed out in previous works [15], RMs can change the effective moment of 

inertia of the thin plate. Since the bending stiffness D  is related to both modulus and 

moment of inertia, the RMs will also have an influence on the effective bending stiffness. 

In order to find out the physical origin of the two band gaps in Fig. 2(a), we have calculated 

the band structure for an almost equivalent elastic metamaterial except that it is designed with 

no RMs. The removing of RMs is obtained by replacing the original steel plate in Fig. 1 and 

Fig. 2(a) with a core shell structure, which is shown in Fig. 2(b). Such a core-shell structure 

has exactly the same weight as the original steel plate, but the mass density distribution is 

mostly concentrated inside a very small central area (the central dark core with a radius of 

0.2cm ). The outer radius of the very light part (the yellow shell) is set to be the same as the 

original structure, i.e. 1cm . The relevant material parameters are set as mass density 

�=1.8*10^5 kg m-3, Young’s modulus E = 180GPa, Poisson ratio � = 0.25 for the central dark 

core, and � =677 kg m-3, E=180GPa, �=0.25 for the yellow shell. 

This design could greatly reduce the moment of inertia of this unit cell, while keeping the 

other physical parameters to be almost the same. The band structure of this structure is 

showed in Fig. 2(b). Obviously, the lower band gap is almost exactly the same as that in the 

original structure (337Hz-546Hz). However, the original higher band gap (600Hz-620Hz) 

disappears. This result clearly proves that the higher band gap in the original structure is 

related to the RMs, while the lower band gap in both structures is independent of the RMs. As 

we shall show later, the two band gaps correspond to regions of negative bending stiffness 

and negative mass density, respectively. 

 



 

 

Fig. 3. (a) The obtained effective mass density in the z direction as a function of the 

frequency is described in Fig. 3(a). The dark grey region (337Hz-546Hz) represents the 

region with negative mass density. (b) The obtained effective bending stiffness from resonant 

frequency analysis. Black /red /blue dots represent the effective bending stiffness of plate 

with 13×13 / 15×15 / 18×18 unit cell, respectively. (c, e) The eigen-field distributions 

(f=621Hz and f=669Hz) of the elastic metamaterial thin plate (13×13 unit cell，b=0.65m). (d, 

f) The corresponding eigen-field distributions obtained with effective parameters (f=619Hz 

and f=668Hz). 

 

The effective mass density can be obtained from the eigenmodes in the artificial structure 

without the RMs easily. Based on Newton’s second law, the effective mass density satisfies, 

eff
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Here eff
i  and i

effu  denote the effective mass density and the effective displacement of the 



 

unit cell in the i direction, respectively. eff
iF  is the effective net force exerted on the unit cell 

in the i direction. Here, eff
iF  and eff

iu  can be obtained from the eigenmodes as, 
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for waves propagating in the x direction. Here, ijT
 is the component of the stress tensor, 

with , , ,i j x y z . By applying Eqs. (2) and (3), the effective mass density in the z direction 

of the elastic metamaterial thin plate is plotted in Fig. 3(a). Here, we note that only the 

positive values of mass density are obtained because they are retrieved from the eigenmodes. 

However, since the mass density should obey the Lorentz model, obviously the mass density 

has a region of negative value between 337Hz and 546Hz (marked by dark grey region), 

which is consistent with the lower band gap. Therefore, the physical origin of the lower band 

gap lies in negative effective mass density of the thin plate. 

In order to prove that the out-of-plane RMs will change the effective bending stiffness of 

the thin plate, we have conducted resonant frequency analysis for finite-sized samples with 

different sizes. Here, we consider the square elastic metamaterial thin plate is simply 

four-side-supported. And the boundary condition of the samples is: 

0( ) 0xW   ;        (4a) 

 0( ) 0yW   ,       (4b) 

where W denotes the displacement. We choose three thin plates with different sizes (13×13 / 

15×15 / 18×18 unit cells) to investigate the resonant properties. We note that the bending 

stiffness, mass density, and resonant frequencies of a four-side-supported square thin plate are 

related by the following equation: 
2 2

2 eff
2

+n
mn

Dm

b m
  .   (5) 

Here, mn
 
is the resonant frequency, m and n denote the order along the x and y directions, 

respectively. b is the side length of the thin plate. 
effD  is the effective bending stiffness. And

eff
zm h  is the mass density per unit area.  

The resonant frequency mn  can be obtained by finite element analysis using Comsol 

Multiphysics. The order m and n can be determined from the eigen-field distributions. For 

examples, we show two eigen-field distributions at f=621Hz and 669Hz in Figs. 3(c) and 3(e). 

One can clearly count that m=8 and n=1 for the eigen-field of 621Hz; m=1 and n=2 for the 

eigen-field of 669Hz, respectively. Finally, by substituting the previously obtained effective 

mass density into Eq. (5), we can calculate the effective bending stiffness. The retrieved 

1 effD  is plotted in Fig. 3(b) for the three samples of 13×13(Black dots) / 15×15(red dots) / 



 

18×18(blue dots) unit cells. Obviously, the 1 effD  also obey the Lorentz model, and it has a 

negative value between 645Hz and 665Hz, in which there exists no resonant frequencies. It 

corresponds to the higher band gap in Fig. 2(a), although the frequency is shifted a little due 

to the finite-size effect or the simply supported boundary condition, which are nonexistent in 

infinite sample with periodic boundary conditions. From the region with resonant frequencies, 

we find that the obtained 1 effD  is almost the same for the three samples of different sizes. 

The resonant behavior appears in 1 effD  near the frequency of 620Hz, where the RMs exist. 

This indicates that the RM is indeed changing the effective bending stiffness significantly 

near its frequency. Such a change in bending stiffness will also significantly change the 

distribution of resonant modes. For instance, we choose two resonant frequencies (f=621Hz 

and f=669Hz), the eigen-field distributions are plotted in Figs. 3(c) and 3(e). At these two 

frequencies, the corresponding effective mass density and bending stiffness can be obtained in 

Figs. 3(a) and 3(b), as 3284   eff
z kg m   and 9.38 /effD N m ; 3470   eff

z kg m   and 

3042.7 /effD N m , respectively. The same eigen-field distribution can be obtained for a thin 

plate with 3 284 kg m   and 9.32 /D N m  at f=619Hz; 3 470 kg m   and 

3035 /D N m  at 668Hz, respectively, as shown in Figs. 3(d) and 3(f). We note that due to the 

very small value of 1 effD  at f=669Hz, the resonant mode has very small resonant order 

(m=1 and n=2). While due to the large value of 1 effD  at f=621Hz, the resonant mode has 

relatively large resonant order (m=8 and n=1). Clearly, the effective bending stiffness can be 

tuned from positive (below band gap) to negative (band gap regime) and even to infinity (the 

upper band gap edge). And this resonant behavior in effective bending stiffness could 

dramatically change the resonant frequencies of the thin plate.  

 



 

 
Fig. 4. The band structure of the metamaterial with a platinum cylinder at the centre and the 

field distributions of the metamaterial plate in some specific eigenstates. (a) The proposed 

unit cell is showed in the lower left corner of Fig. 4(a). Here, Black curves highlight the 

z-polarized shear waves. Black dashed line represents the negative band. Red/blue curve 

represents the y-polarized shear/longitudinal branch. The resonant modes (RMs) are marked 

by green curves. (b, c, d) The eigen-fields (f=686Hz, f=686Hz) at the Г point in the two x- 

and y-polarized rotational bands and the hybridized mode eigen-field (f=631Hz) at 

0.7xk a    in the negative band. Here, arrows represent displacements and color represents 

amplitude (blue for small and red for larger). 

 

Discussion 

In the above discussions, we have shown that the effective bending stiffness of elastic 

metamaterial thin plate can be controlled by out-of-plane RMs. In the following, we 

demonstrate an example on how to utilize this property to engineering the propagation of 

flexural waves in thin plates. Specifically, we find that the moment of inertia of the central 

mass plate can be enhanced significantly by extension in the z direction. The ratio between 

mass density and moment of inertia can be engineered in this approach. In the following, we 

have added a rod structure to the original central mass plate, as shown in the inset graph of 

Fig. 4(a). The moment of inertia is much enlarged when the rod is relatively long. In this way, 

the moment of inertia can be independently tuned with the mass density. In Fig. 4, we 

consider the case when a platinum rod is added at the center of the central mass plate. The 

material parameters are taken to be mass density � =2.145*10^4 kg m-3, the Young’s modulus 

� = 169GPa, Poisson ratio � = 0.38 for the platinum. The radius of the platinum cylinder is 



 

0.1cm and the height is 4cm. The outer radius of the steel (green part) is still 1cm, but the out 

radius of silicone rubber (purple part) reduces to 1.1cm. The lattice constant is 5cm and the 

plate thickness changes to 0.3cm. Fig. 4(a) shows the calculated band structure. Clearly, there 

is one negative band (black dashed line, 578Hz-685Hz) within the original first band gap 

induced by the negative mass density. This is because that the enhanced moment of inertia 

due to the platinum rod reduces the resonant frequency of the bending stiffness to be within 

the first band gap. At the same time, the reduced plate thickness and the outer radius of 

silicone rubber enlarges the bandwidth of the negative bending stiffness. As a result, a 

negative band appears due to double negativity in bending stiffness and mass density. 

The eigen-fields can give a clear picture of the physical origin of the negative band. The 

field distributions of some specific eigen-fields at the Г point and within the negative band are 

showed in Figs. 4(b)-6(d). Here, color indicates the amplitudes of displacements (blue/red for 

small/big values) and the arrows show the displacement vectors directly. The eigenstates 

(f=686Hz and f=686Hz, at the Г point) in Figs. 4(b) and 4(c) are clearly rotational modes with 

x-axis and y-axis, respectively. The eigen-field (f=631Hz, at 0.7xk a   ) is a hybridized state 

of the y-polarized rotational mode and the z-polarized shear mode.  

 

         
Fig. 5. For waves propagate in the x direction, the components of effective mass density in 

the z direction of the negative band (578Hz-685Hz) as function of frequency are described in 

Fig. 5 (black marks). The retrieved 1 effD within the negative band is also plotted in Fig. 5 

(red marks). 

 

  In order to understand the physical origin of the negative band in Fig. 4(a) clearly, we 

have calculated the effective mass density in the z direction and bending stiffness. Here, the 

black marks represent the effective mass density in the z direction. Red marks are the 

retrieved 1 effD  obtained by combining the mass density and the band structure in the 

dispersion relation of flexural waves 4 2 0
eff

m
k

D
  , which can be obtained from Eq. (1). We 

can clearly see that the effective mass density and bending stiffness are simultaneously 

negative within the negative band. The effective bending stiffness crosses zero at the upper 



 

band edge. Obviously, the negative band is induced by double negativity in bending stiffness 

and mass density. 

 

Conclusions 

For conclusion, we have systematically investigated the resonant behaviors of an elastic 

metamaterial thin plate. Specifically, we prove that the effective bending stiffness of the 

metamaterial thin plate is closely related to the out-of-plane rotational resonances of the 

metamaterial. By engineering the out-of-plane rotational resonances, we can control the 

resonant behavior in the effective bending stiffness, independently with the effective mass 

density, which renders the resonant frequencies of the thin plate predictable and configurable. 

The effective bending stiffness can be tuned from positive to negative values, and even 

infinity. Realization of double negativity in bending stiffness and mass density has been 

shown to produce a negative band with negative group velocity. Our work demonstrates a 

novel design principle in controlling flexural waves in elastic thin plates, which could lead to 

important applications in acoustics and mechanical engineering. 
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