Simulation of MEA in PEMFC and Interface of Nanometer-Sized Electrodes

Zhang Qianfan, Liu Yuwen, Chen Shengli *

College of Chemistry and Molecular Science, Wuhan University

Simulation of MEA in PEMFC

Background

• Proton Exchange Membrane Fuel Cell(PEMFC)

- High Energy Efficiency
- Clean
- Convenient

• Problems

- Cost (Pt Catalyst)
- Catalyst Poisoning (CO)
- ComplexManagement System

One Possible Solution

Numerical Simulation

Limitations of Experiments

- Can only get the overall response of a whole cell or independent performance of one part
- High cost of money and time

Advantage of Simulation

- Spend less money and time
- Distribution of parameters in the cell
- Help understand the mechanism and find out the key in a cell

Main Work

- Performance of PEMFC under different working conditions
- Influence of membrane water and catalyst loading at high temperature

Structure of PEMFC

Anode:

$$H_2 \rightarrow 2H^+ + 2e^-$$

Cathode: $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$

Equations and Models

$$\nabla \left(\frac{\sigma_e}{F} \nabla \varphi_e\right) = S_e$$

•Water in Membrane

$$\nabla \left[\frac{\rho_m \omega_w^m}{M_{H_2O}} \left(-D_w \nabla \lambda_w \right) + \left(-n_{drag} \frac{\sigma_m \nabla \varphi_m}{F} \right) \right] = S_w$$

Equations and Models

$$\begin{split} \underbrace{(\tilde{S}_{i})}_{i} &= -\frac{j_{local} \times \tilde{S}_{V}}{nF} (i = O_{2} / H_{2}) \\ j_{local} &= j_{0} \underbrace{(\tilde{C}_{m})}_{C_{0}} \left[\exp\left(\frac{0.5F}{RT}(\tilde{\eta}) - \exp\left(-\frac{0.5F}{RT}\eta\right) \right] \\ \eta &= E_{eq} - \underbrace{(\tilde{\varphi}_{P})}_{I} - \underbrace{(\tilde{\varphi}_{m})}_{I} \\ j_{0} &= j_{0}(T_{0}) \exp\left[-\frac{E_{a}}{R} \left(\frac{1}{T} - \frac{1}{T_{0}}\right)\right] \end{split}$$

Potential Field, Concentration Field

Multi-Physics Coupling

L

Input Files

S	ubdomain Expre	ssio	ns	X
	Subdomain selectio	n	Name	Expression
	1	2	ro_gas	p_in_c*M_gas/(R*T_in)
	2		ita	1.229-phi_Pt+phi_mem
	3		j_local	0.847457627118644*j_0_c_c_02*(exp(0.55*F*ita/(R*T_in))-exp(-0.4
			R_02	-0.25*j_local*S/(F*V)
			R_H2	
			a_water_g	x_H20_g_c*p_in_c/p_sa
			w_H20_m	18*1amda/(18*1amda+EW)
			ro_m	1000*(1.98+0.0324*1an]a)/(1+0.0648*1anda)
		~	n_drag	(0. 2141562043918891+1 (0. 35*1 am da) ⁺) ⁺ (-0. 25)
			sigma_m	(-0. 326+0. 5193*lamda)*exp(1268*(1/303-1/T_in))
	Defect by group	P	<	
				OK Cancel Apply Help

Adaptive	Optimization/Sensitivity	Advanced
General	Parametric	Stationary
Parameters		
P	T :- PV	
rarameter names.		
Parameter values:	343 0.1 343 0.12 343 0.14 343	3 0.16 34 Edit
	💊 Load Parameter	Values From File
Segregated groups		

Currents under Different Working Conditions

0.75V

V8.0

Polarization Curves and Membrane Conductivity

Left is Polarization Curves, Right is Membrane Conductivity

the value of σ_m at 393K-30% (~2.5) is less than half of that at 368K-80% (~5.5), and only is one third of the value at 353K-100% (~7.5)

Membrane Water

Current Changes With Membrane Water Content (0.6V)

If λ_m at 393K can be improved from 3 to 4, the performance will be better than that at 353K; while λ_m at 368K must be improved to 10 so that the performance can be better than that at 353K.

Catalyst Loading

Current Changes With Catalyst Loading (0.6V)

current is almost the same at 393K even if the loading is 20% lower (original loading is 0.1mg/cm²)

 At high temperature (>373K), a relative low humidity (~35%) can get high current

At high temperature, the low membrane conductivity is the reason for the poor performance, so improve the water content in membrane can increase the current dramatically

At 393K, the loading can be reduce by ~20%, without decreasing the performance of PEMFC

Part II

Simulation of Interface of Nanometer-Sized Electrodes

Nanometer-Sized Electrodes

Applications

- Single Molecules Detection
- Measurement of Fast Electron-Transfer Kinetics
- Electrochemical Sensors
- Mechanism of an Electrochemistry Reaction

Features

- High Speed of Mass Transportation
- Overlap of Double Layer and Diffusion Layer
- Edge Effects (Concentration, Potential, Dielectric Constant)

Nanometer-Sized Electrodes

When the electrode size is only a few nanometers

- Thickness of Double Layer ~1nm
- Electron Tunneling Effect ~1nm
- Surface Adsorbate ~0.1nm
- Effective Diffusion Layer ~0.8r

Traditional Theory Does Not Work

Cannot Explain Experimental Phenomena of the Nanometer-Sized Electrodes

Poisson's equation describing the local electric potential

$$\nabla^2 \phi = \frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{\partial^2 \phi}{\partial z^2} = -\frac{4\pi\rho}{\varepsilon_0 \varepsilon_r}$$

 Nernst-Planck equation describing the steady-state transport of ionic species

$$\frac{\partial c_{i}}{\partial t} = -\nabla \cdot J_{i} = \left(\frac{\partial^{2} c_{i}}{\partial r^{2}} + \frac{1}{r} \frac{\partial c_{i}}{\partial r} + \frac{\partial^{2} c_{i}}{\partial z^{2}}\right) + \frac{1}{r} \frac{\partial}{\partial r} \left(r \cdot z_{i} c_{i} \frac{F}{RT} \nabla \phi\right) + \frac{\partial}{\partial z} \left(z_{i} c_{i} \frac{F}{RT} \nabla \phi\right) = 0$$

Electron-transfer theory

- **Butler-Volmer Theory**
- Marcus Theory
- Hush Theory

 $k = \frac{2\pi}{\hbar} H_{AB}^2$ ΔG^* $\Delta G^* = w^r + \frac{(\Delta G^{0'} + \lambda)^2}{4\lambda}$ RT $/4\pi\lambda R\overline{T}$ $\Delta \, {
m G}^0$ $\Delta \, G^0$ Normal: increase of ΔG^0 No activation barrier Inverted: decrease of decreases the rate maximum k_{ET} ΔG^0 decreases the rate $/\mathrm{cm\,s}^{-1}$ 10^{6} 10^{-4} rate constant $(\lambda = 50 \text{kJ mol})$ 10^{-14} $(\lambda = 100 kJ mol$ $(\lambda = 200 \text{kJ mol}^{-1})$ 10^{-24} $(\lambda = 50 \text{kJ mol}^{-1})$ $(\lambda = 100 \text{kJ mol}^{-1})$ $(\lambda = 200 \text{kJ mol}^{-1})$ 10^{-34} -1.5 0.5 1.0 -1.0 -0.50.0 1.5 $E - \phi_{pet}$ /V

Marcus theory

Functions	×
Defined functions	Function definition Function name: die Arguments: E, nw, N0, uv, kB, T, ep0 Expression nw^2+7*N0*uv*(nw^2+2)/3/ep0/sqrt(73)/E*Ld(sqrt(73)* Derivatives Image: Complex compl

Functions		×
Functions Defined functions Ld die Kox kred ustart ustart	Function definition Function name: Interpolation method: Extrapolation method: Value outside range: Use space coordinal Function description File name: D:\spheri numdastz Data type: Structure Dimension: 1D	kox Piecewise cubic Interpolation function tes as default function arguments ical_comsol\Hush_theory\ ar20\numdastar020.txt ad

Spherical Electrodes

Disk Electrodes

Edge Effects of Disk Electrodes

r₀

$$p = p_0 \cdot e^{-\beta(x-x_0)}$$

Structure of Electrochemical Interface

- The electrochemical interface at large electrode (>100nm) can be well described as a pure concentration-depletion-layer.
- The electrochemical interface at nano-sized particle (1~10nm) is more like a electric-double-layer.

Size Dependent Double Layer Structure

The radial profiles of ET constant at disk electrodes of various sizes

Concentration Distribution

Concentration of reactant

Polarization Curves

Left is Marcus Theory and Righ is B-V Theory

When the electrode size is less than 5nm, the limiting current is much larger than the value predicted by tranditional theory. Our model matches the experiment results very well.

Polarization Curves

Left is the polarization curves of reduction of ions with different charge, the electrode radius is 5nm

Both imigration and diffusion must be considered in the study of nanometer-sized electrode, those theories that only consider diffusion is not applicable any more.

R. He et al, J. Phys. Chem. B 2006, 110, 3262-3270
Y. W. Liu et al J. Phys. Chem. C 2010,114, 10812–10822
Y. W. Liu et al, Electrochimica. Acta, 2010, in press
Y. W. Liu et al, J. Phys. Chem. C, to be submitted

Conclusion

- In the reasearch of nanometer-sized electrodes, tranditional theory based on pure diffusion is not applicable, since the imigration should be considere
 - Sizes of Electrode
 - Electrode Potential
 - **Charge Number and Concentration of Reactants and Products**
- In the research of nanometer-sized disk electrodes, the edge effects should be considered
 - concentration
 - electrical potential
 - dielectric constant
 - reaction rate constant
- The electroactive radius are larger than the real electrode size, especially for small disk electrodes (r <10nm)

Thanks !