

OCTOBER 7-9 2010, BOSTON, MA, USA

Thermal Analysis of Two Braze Alloys to Improve the Performance of a Contactor During the Temperature Rise Test

G. Contreras¹, E. Gutierrez-Miravete²

¹ General Electric, Plainville, CT

² Rensselaer Polytechnic Institute, Hartford, CT

Overview

- Background Contactor & Braze Alloy
- Material Considerations and Geometry of the model
- Temperature Rise
- Use of COMSOL
- Validation of work
- Results
- Conclusions / Future Works

Electrical Contactors

Contactor Components

- contact assemblies current carrying part
- electromagnets driving force
- enclosure frame housing

The Brazing Process for Contact Assemblies

Brazing

- Metal Joining Process
- Use of a filler metal (*braze alloy*)
 - Capillary action
 - Filler Metal with lower Melting Temperature
- Temperatures to melt filler metal are above 450 C

Contact Assembly - Cross Section CONTACT TIP BRAZE ALLOY

ARM / CARRIER

Material Considerations

Contact Tip: Round Silver Cadmium Oxide (90/10)

Carrier: Brass

Braze Alloys: Braze750 & Silfos

PROPERTIES	AgCdO	Brass	Braze 750	Silfos
Electrical Resistivity (ohm-meter)	3.3 x 10 ⁻⁸	5.39 x 10 ⁻⁸	17.4 x 10 ⁻⁸	3.2 x 10 ⁻⁸
Temperature Coefficient of Resistance (1/K)	0.004	0.001	0.00369	0.00375
Thermal Conductivity (W/m*K)	386.17	140	40	30
Density (kg/m ³)	10000	8670	8440	9945.67
Heat Capacity (J/kg*K)	238.48	380	343.25	260

Geometry

Contact Assembly - 3D Model

Contact Tip Diameter = 6 mm

Arm Length = 8 mm

Temperature Rise Test

Determine the maximum steady state temperature reached by the contact terminals after passing the rated current of the contactor

- Test Required per UL508 Standard
 - Parameters
 - Under normal conditions
 - While carrying its rated current continuously (30 amps)
 - While device is mounted as intended in use
 - Until temperature readings are constant (~ 5 hours)

Temperature Rise (experimental)

Two contactors were submitted for Temperature Rise Test to determine which braze alloy had a better performance.

Contact assemblies with Braze Alloy 750 had a better performance

Use of COMSOL

- Determine the thermal response of the contact assemblies
 - during the temperature rise test
- Module: Joule Heating / Electro-Thermal Interaction
 - Heat Transfer by Conduction (ht)
 - Conductive Media
- 2D Axis-symmetric Model (Arc Transient)
 - Overload Test Validation by comparison to prior work
- □ 3D Model (Joule Heating Steady State)
 - Steady State conditions obtained during the temperature rise test - present work

Governing Equations

Joule Heating

- Q = resistive heating [W/m³]
- J = current density [Amp/m²]
- σ = electric conductivity [S/m]

$$Q \propto |J|^{2}$$
$$Q = \frac{1}{\sigma} \cdot |J|^{2} = \frac{1}{\sigma} \cdot |\sigma \cdot E|^{2} = \sigma |\nabla V|^{2}$$

- The resistive heating Q is the Joule heat due to current flow.
- Term is predefined as the source term when using the Joule-Heating predefined Multiphysics coupling.

Validation of Simulation

Thermal-electric solid element from ANSYS

Analysis for a locked rotor test that is rated 240 amps

Joule Heating was imposed as current coming into the model

Arc Heating was imposed on the model as heat flux

□ Temperature reached on the contact surface when arc heating is applied for 3 milliseconds.

□ Same model was developed in COMSOL using the electro-thermal module with triangular quadratic elements.

Validation of Simulation using Comsol

3D Model (Joule Heating-Steady State)

Boundaries	Conductive Media	Heat Transfer
B 1	Ground	Heat Flux (h=55)
B ₂	Inward Current	Themal Insulation
Others	Electric Insulation	Heat Flux (h=1)

Analysis Results - temperature rise

Analysis Results - temperature rise

Conclusions

- COMSOL proved to be a reliable tool as we were able to able to predict the same results from previous jobs (locked rotor)
- Same methodology was applied with a 3D model to predict the performance during a temperature rise test
- Experimental data showed that Braze 750 had a better performance on the temperature rise test
- Validation in COMSOL was in agreement with experimental data
- Present evaluation was made for two braze alloys with contact tips using Silver Cadmium Oxide
- New materials on contact tips (RoHS requirements) will require extensive testing