Thermally Induced-Noise Reduction Using an Electrostatic Force Feedback

Haksun Lee, Jason V. Clark School of Electrical and Computer Engineering Purdue University, IN lee476@purdue.edu jvclark@purdue.edu

Introduction to MEMS

- MEMS gave versatile sensing solutions
 - Gyroscope
 - Accelerometer
 - Bio-Sensors

- MEMS have various advantages
 - Low cost and high performance
 - Small size

Thermal Noise in MEMS

- Thermal Agitation
 - -Caused by temperature fluctuation
 - -Inconsiderable in macro-scale
 - -Becomes significant in micro-scale

Thermal Noise in MEMS

• Displacement of a mass-spring oscillator

$$\frac{1}{2}k\langle x^2\rangle = \frac{1}{2}K_BT$$

- k= spring constant
- x= mean-square displacement
- KB=1.38e-23 J/K (Boltzmann's constant)
- T= temperature

Thermal Noise in MEMS

Example) At T=300K, a micro cantilever with an effectiv e stiffness of k=1e-3[N/m] will have an expected displa cement amplitude <x> about ~2nm.

Not desirable for devices such as AFM which handles molecular scale measurements.

Time (sec.)

Thermal Noise

Electrostatic Force Feedback

Previous usages of force feedback

- Extend sensor bandwidth beyond $\omega_0.[2]$
- Nonlinearities in capacitive pickoff minimized[2]
- Decrease spring constant for high performance[2],[3]

Electrostatic Force Feedback

$$F_{\text{electrostatic}} = N\epsilon_0 V^2 \frac{h}{g} [N]$$

1	Overlap of the fingers		
g	Gap between the fingers		
w	Width of a finger		
h	Thickness of the device		
Ν	Number of fingers		
Table 1 Important accomptric variables for comb			

 Table 1. Important geometric variables for comb

 drive

$$x = \frac{\varepsilon_0 h N}{g \cdot k_x} V^2 \ [m]$$

$$C = \frac{2 N \varepsilon_0 h \cdot l}{g}$$

Electrostatic Force Feedback

- Single-ended sensing interface
 - position measurement by applying Vs pulse at capa citive half bridge[2].
 - Capacitive imbalance cause different amount of cha rge flow[2].

Single-ended representation for op-amp thermal noise analysis. [2]

• MEMS> 2D-Plane Stress & Electrostatics

Modeling Random Noise
 Option > Functions > New > File

Random arrays of numbers were created using MATLAB.

unctions			
Defined functions	Function definition		
dispn	Function name:	random	
dispp	Interpolation method:	Piecewise cubic	•
rdd	Extrapolation method:	Interpolation function	•
	Value outside range:	, 	
	×	f(x)	
	0.0	-2.5995884319899	
	1.0E-6	0.78007772118455	
	2.0E-6	0.602940957090098	
	3.0E-6	0.942798904629135	
	4.0E-6	-1.02391316916655	
	5.0E-6	-0.0678298209012784	
	6.0E-6	0.0817603409164818	
	7.05.4	4.76700604044706	

Global Expression > Fnoise = (amplitude) * random(t)

Feedback Voltage Expression

Feedback Voltage Expression

Summary of Simulation

Challenges in COMSOL

• Modeling sensing interface with SPICE Physics > SPICE Circuit Editor

PICE Circ	uit E	litor			<u><</u>
5PICE netli:	st:			Ē	≩ 鹽 🚔 ┉ ╢ ᄵ 🍥 🖗 🖾
XM1	1		3		mems 🔺
Rl	2		0		1MEG
RF	2		3		1
XOP1 *	2	1	3		OPAMP1
* OPAMP	MACE	0 M	ODE	CL, SI	INGLE-POLE
* conne	ctior	is:		non	n-inverting input
*				1	inverting input
*				Í.	output
*				i	
.SUBCKT	OPAN	IP1		1	2 6
* INPUT	IMPE	DAN	CE		
RIN	1		2		10MEG
* gain	bandı	Jidt	hτ	oroduc	ct = DCGAIN x POLE1 = 10MH
* DCGAI	N=100	K A	ND	POLE1	L=100HZ
EGAIN	3 0		1	2	100K 💌
•					
Force /	AC ana	lysis			
					OK Cancel Help

Conclusion

- Electrostatic force feedback reduces the amplitude of noise induced displacement
- More careful modeling necessary for mor e significant reduction
 - Randomized noise
 - Realistic Geometry
 - Sensing Interface

References

- [1] T.B. Gabrielson, "Mechanical-Thermal Noise in Micromachined Acoustic and Vibrati on Sensors", IEEE Transactions on Electron Devices, Vol.40, 5 May 1993, pp. 903-90
 9
- [2]M. Lemkin, B. E. Boser, "A Three Axis Micromachined Accelerometer with a CMOS P osition-Sense Interface and Digital Offset-Trim Electronics", IEEE J. Solid-State Circu its 34(4) (1999) 465 456.
- [3] M. Handtmann, R. Aigner, A. Meckes, G. K. M. Watchutka. "Sensitivity Enhancement of MEMS Inertial Sensors Using Negative Springs and Active Control", Sensors and Actuators A 97-98(2002) 153-160.
- [4] http://pakogom.files.wordpress.com/2008/06/main_accelerometer20080609.png[5] http://mems.sandia.org