Computational Modeling of Synthetic Jets

David Durán Omar López, Ph.D.

Mechanical Engineering Department Universidad de los Andes, Bogotá - Colombia

Universidad de Ios Andes

Comsol Conference 2010 – Boston, October 7-9

Universidad de Ios Andes

- 1. Motivation
- 2. Methodology
- 3. Dimensional analysis of the problem
- 4. 3D Piezoelectric Disk Model
- 5. Axisymmetric SJ Actuator Model
- 6. Numerical Results
- 7. Conclusions
- 8. Contact
- 9. References

Motivation

Tridimensional Schematic of the Synthetic Jet Actuator. Image from (Morpheus Laboratory, University of Maryland, 2009)

Applications

- Separation Control
- Flow Control
- Mixing
- Heat Transfer

Why Comsol?

- Multiphysics Problem
- Other simulations only
 include Navier-Stokes

3. Analysis of the Relevant Dimensionless Numbers according to different parameters of the model

4. Conclusions

5

- The vortex ring formation depends on the velocity field of the fluid at the aperture of the Actuator
- The average velocity cannot be the characteristic velocity because it is zero
- Max. Velocity (U) was chosen as the characteristic velocity.

$$U = f(d, v, \omega)$$

• Since there are 4 variables and 2 dimensions, the problem can be described with 2 non dimensional numbers

These two numbers be related through the Inverse of the Strouhal Number:

$$\frac{1}{Sr} = \frac{Re}{S^2}$$

According to Holman et al. 2005, the criterion of formation for synthetic jets can be defined as follows:

If
$$\frac{1}{Sr} > C \rightarrow jet$$

Universidad de Ios Andes

Schematic of the piezoelectric diaphragm showing all the components of the same. Image from (Mane, Mossi, & Bryant, 2008)

3D Model of the Disk in Comsol 3.4

Displacement vs. Voltage : Simply Supported

Typical Performance at 1 Hz Sinusoidal Drive, No Load

The graph in black is from the Datasheet of THUNDER. Manufactured by FACE International

Axisymmetric SJ Actuator Model

10 Universidad de los Andes

Numerical Results

Exp. No.	Diam. (m)	height (m)	Potential (V)	viscosity (Pa.s)	Vel max. (m/s)	Reynolds	Stokes	1/Sr	Criterion
<u>1</u>	2e-03	1.4e-03	25	1e-06	3.27e-03	6.54	5.01	0.26	no jet
<u>2</u>	2e-03	1.4e-03	50	1e-06	3.27e-03	6.54	5.01	0.26	no jet
<u>3</u>	2e-03	1.4e-03	200	1e-06	3.02e-03	6.05	5.01	0.24	no jet
<u>4</u>	2e-04	1.4e-03	100	1e-06	1.21e-01	24.2	0.50	96.29	no jet
<u>5</u>	2e-04	1.4e-03	500	1e-06	1.21e-01	24.2	0.50	96.29	no jet
<u>6</u>	2e-04	1.4e-03	100	1e-07	0.135	270	1.59	107.43	jet
<u>7</u>	2e-04	1.4e-03	100	1e-06	0.146	29.2	0.50	116.18	jet

11 Universidad de los Andes

No Jet - #4 in table

Jet - # 6 in table

- The fluid velocity is weakly dependent of the applied voltage
- The fluid velocity is strongly dependent of the aperture diaphragm
- The jet formation criterion is in the order of hundreds
- There exists vortex ring formation in the inside of the cavity

- Study of the influence of other geometric parameters such as: actuator's height, Disk diameter, etc
- Study of the influence of the frequency in the SJ formation
- Coupling of the acoustics module
- Comparison with the Lumped Element Model
- Study of the influence of the vortex rings interactions with the diaphragm in the quality of SJ formation

niversidad de

os Andes

Contact: David Durán

Universidad de los Andes

Departamento Ing. Mecánica (Bogotá), Colombia

da-duran@uniandes.edu.co

tel: +57 315-8164260

References

1. Alan Barnett et al, Finite Element Approach to Model and Analyze Piezoelectric Actuators, *JSME International Journal*, 476-485 (2001)

2. Quentin Gallas et al, Lumped Element Modeling of Piezoelectric-Driven Synthetic Jet Actuators, *AIAA Journal*, 240-247 (2003)

3. Ryan Holman, Formation Criterion for Synthetic Jets, AIAA Journal, (2005)

4. Uno Ingard, On the Theory and Design of Acoustic Resonators, *The Journal of the Acoustical Society of America*, 1037-1061 (1953)

5. Poorna Mane et al, Experimental design and analysis for piezoelectric circular actuators in flow control applications, *Smart Materials and Structures* (2008)

7. Vincent Piefort, Finite Element *Modelling of Piezoelectric Active Structures*, Ph.D. thesis. Bruxelles, Belgium: Université Libre de Bruxelles, Department for Mechanical Engineering and Robotics (2001)

8. Christopher Rumsey, *Proceedings of the 2004 Workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control,* Hampton, Virginia: NASA. (2007)

9. B. Smith et al, The Formation and Evolution of Synthetic Jets, *Physics of Fluids*, 2281-2297 (1998)

10. Yukata Takagi et al, Dielectric Properties of Lead Zirconate, *Journal of the Physical Society*, 208-209 (1951)

11. David Durán et al, *Computational Modeling of Synthetic Jets*, Mechanical Engineering Thesis (2010)