

ROYAL INSTITUTE OF TECHNOLOGY

Application of Multiphysics in the Simulation of Metallurgical Processes

Mattias Ek ${ }^{1, *}$ and Du Sichen ${ }^{1}$
${ }^{1}$ Department of Materials Science and Engineering, Royal Institute of Technology

ROYAL INSTITUTE OF TECHNOLOGY

Stirring in Metallurgical Processes
-Argon or Nitrogen Stirring
-Thermal and Chemical Homogeneity

- Process time gains
-Refractory wear and material costs
-Importance of CFD

ROYAL INSTITUTE OF TECHNOLOGY

Vessels

$\cdot 300$ ton converter vessel, stirring $400-800 \mathrm{Nm}^{3} \mathrm{~h}^{-1}$ - 180 ton ladle vessel, stirring $20-40 \mathrm{Nm}^{3} \mathrm{~h}^{-1}$

ROYAL INSTITUTE OF TECHNOLOGY

Assumptions

General assumptions

-Only 2 phases present, gas and metal.
-Constant temperature and stirring rate
-The $\mathrm{K}-\varepsilon$ model is employed to calculate turbulent flow. -Surface is assumed flat and no top phase is present.

-Ladle specific assumptions

-Flow is assumed to stabilized.
-All alloying material is present within a small sub domain at beginning.

- No loss of alloying element

ROYAL INSTITUTE OF TECHNOLOGY

Modelling

-Comsol Multphysics 3.5
-Chemical Engineering module

- Bubbly flow model
- Convection and Diffusion model

Momentum equation $\phi_{l} \rho_{l} \frac{\partial u_{l}}{\partial t}+\phi_{l} \rho_{l} u_{l} \nabla u_{l}=-\nabla p_{l}+\phi_{l} \rho_{l} g+F+\nabla\left[\phi_{l}\left(\eta_{l}+\eta_{T}\right)\left(\nabla u_{l}+\nabla u_{l}^{T}-\frac{2}{3}\left(\nabla u_{l}\right) I\right)\right]$
Continuity equation $\frac{\partial}{\partial t}\left(\rho_{1} \phi_{1}+\rho_{8} \phi_{8}\right)+\nabla \cdot\left(\rho_{1} \phi_{1} u_{4}+\rho_{8} \phi_{8} u_{8}\right)=0$
Mass transfer

$$
\frac{\partial c_{i}}{\partial t}+\nabla\left(-D_{i} \nabla c_{i}\right)=R_{i}-u \nabla \cdot c_{i}
$$

ROYAL INSTITUTE OF TECHNOLOGY

Boundary conditions

Bubbly flow mode

- Logarithmic wall function
- Gas influx $\left[\mathrm{kgm}^{-2} \mathrm{~s}^{-1}\right.$]
- Outlet of gas

Mass transfer
-All walls insulating

ROYAL INSTITUTE OF TECHNOLOGY

Solving method

-Paradiso solver
-Time dependent

ROYAL INSTITUTE OF TECHNOLOGY

Converter results

ROYAL INSTITUTE OF TECHNOLOGY

Ladle results

Mixing time criteria $\tau_{95,99}=\frac{c \mid}{c_{\infty}}$

ROYAL INSTITUTE OF TECHNOLOGY

Conclusion

-A simplified model of two metallurgical processes were developed using Comsol Multiphysics 3.5 -Flow and mixing time in the ladle was calculated. -The flow profile within the converter was calculated.

ROYAL INSTITUTE OF TECHNOLOGY

