

Application of Multiphysics in the Simulation of Metallurgical Processes

Mattias Ek^{1,*} and Du Sichen¹ ¹Department of Materials Science and Engineering, Royal Institute of Technology

Stirring in Metallurgical Processes

Argon or Nitrogen Stirring

- •Thermal and Chemical Homogeneity
- •Process time gains
- Refractory wear and material costs
- Importance of CFD

ROYAL INSTITUTE

Vessels

•300 ton converter vessel, stirring 400-800Nm³h⁻¹
•180 ton ladle vessel, stirring 20-40Nm³h⁻¹

Assumptions

General assumptions

•Only 2 phases present, gas and metal.

•Constant temperature and stirring rate

•The K- ε model is employed to calculate turbulent flow.

•Surface is assumed flat and no top phase is present.

Ladle specific assumptions

•Flow is assumed to stabilized.

•All alloying material is present within a small sub domain at beginning.

•No loss of alloying element

Modelling

Comsol Multphysics 3.5

- Chemical Engineering module
- Bubbly flow model
- Convection and Diffusion model

Momentum equation $\phi_l \rho_l \frac{\partial u_l}{\partial t} + \phi_l \rho_l u_l \nabla u_l = -\nabla p_l + \phi_l \rho_l g + F + \nabla \left[\phi_l (\eta_l + \eta_T) \left(\nabla u_l + \nabla u_l^T - \frac{2}{3} (\nabla u_l) I \right) \right]$

Continuity equation $\frac{\partial}{\partial t}(\rho_l \phi_l + \rho_g \phi_g) + \nabla \cdot (\rho_l \phi_l u_l + \rho_g \phi_g u_g) = 0$

Mass transfer $\frac{\partial c_i}{\partial t} + \nabla (-D_i \nabla c_i) = R_i - u \nabla \cdot c_i$

Boundary conditions

Bubbly flow mode

- Logarithmic wall function
- Gas influx [kgm⁻²s⁻¹]
- Outlet of gas
- Mass transfer
- •All walls insulating

Solving method

Paradiso solverTime dependent

ROYAL INSTITUTE

OF TECHNOLOGY

Converter results

Conclusion

A simplified model of two metallurgical processes were developed using Comsol Multiphysics 3.5
Flow and mixing time in the ladle was calculated.
The flow profile within the converter was calculated.

Thank you for listening

ROYAL INSTITUTE OF TECHNOLOGY