Multiphysics Simulation of REMS hot-film Anemometer Under Typical Martian Atmosphere Conditions

author: Lukasz Kowalski

Universitat Politècnica de Catalunya Departament d'Enginyeria Electrònica Micro & Nano Technologies Research Group

NOVEMBER 17-19 2010, PARIS, FRANCE

Outline

- Rover Environmental Monitoring Station (**REMS**) hot-film anemometer
- Typical Martian atmosphere conditions vs. Earth atmosphere environment
- REMS wind sensor structure
- COMSOL model
- Conductive media DC simulation and boundary condition
- Thermal transfer by conduction simulation and boundary condition
- Solver parameters screenshots
- Coarse simulation results
- Specific simulation results and conclusions
- MarsLab-UPC wind sensor Team

REMS hot-film anemometer

NASA JPL MSL robot mission, fall 2011

REMS mastil

Boom head

wind sensor mask on wafer

wind sensor unit

REMS wind sensor 2D

Typical Martian atmosphere conditions vs. Earth atmosphere environment

		IVII (I CO
1373	Solar constant [W/m²]	591
9,8	Gravity, g [m/s ²]	3,7
N ₂ 78.08%, O ₂ 20.9%, Ar 0.93%	Atmosphere air element composition [%]	CO ₂ 95.32%, N ₂ 2.7%, Ar 1.6%, O ₂ 0.13%
1013 hPa (1Bar)	Surface pressure [hPa]	6-8 hPa (6-8mBar)
1,2	Surface density [kg/m³]	0,02
300 (27 ° C)	Average temperature [K]	220 (-73°C)
from -80°C to +50°C	Temperature variation [K]	from -125°C to +25°C

REMS wind sensor structure

• Heating resistance is located in the center of the Silicon die

•Sputtering deposition of the thin layers: Titanium (20nm) and Platinum (60nm)

COMSOL model

- 1. Plot 2D shape taken from photolithography mask
- 2. Extrude 80nm thick Platinum thin film geometry

- 3. Plot Silicon die of size 1,6mm·1,6mm·0,4mm
- 4. Plot Pyrex support of the inverted table, composed of: four pillars and base

Mesh structure

Platinum 2D mesh

- 1. Triangular coarse mesh of up Platinum surface
- 2. Swept mesh of Platinum thin film by 3 layers
- 3. Triangular coarse mesh of Platinum 3D geometry
- 4. Triangular coarse mesh of Silicon die geometry
- 5. Triangular coarse mesh of Pyrex support geometry

Platinum 3D mesh

Silicon 3D mesh

Pyrex 3D mesh

Conductive media DC simulation and boundary condition

Ground

- Only R_{heat} resistance with 2 pads has been used in simulation domain
- All external surfaces have been electrical isolated
- Ground potential of 0V has been assigned to the pad in the upper surface
- Typically the circuit works with heat current of 5mA. This allows to compute the current density for the other pad

Thermal transfer by conduction simulation and boundary condition, part I

- The whole geometry was included into simulation domain
- The platinum heater resistance was defined as a heat source Q_d defined by electrical Joule effect
- The base temperature at the bottom of the Pyrex support structure has been set to 280K
- All external faces have been exposed to the wind convection coefficient h=5W/m² assuming an atmphspere temperature 280K

Thermal transfer by conduction simulation and boundary conditions, part II pads

• No wire-bonding in the model.

• But thermal conductivity heat looses has been estimated and incorporated into h coefficient!

$$\begin{split} -k_{pyrex} \cdot \frac{A_{cross.wire}}{L_{wire}} &= -h_{add} \cdot A_{cross.pad} \\ h_{add} &= \frac{k_{pyrex}}{L_{wire}} \cdot \frac{A_{cross.wire}}{A_{cross.pad}} \end{split}$$

Solver parameters screenshots

		Solver Parameters		
Adaptive Opumizati	on/Sensitivity	Advanced		
MRES				
Geometric multigrid				
		Settings		
Automatic	-			
	SMRES Seometric multigrid	SMRES Geometric multigrid		

General Stationary Adaptive	Optimization/Sensitivity Advance
inearity: A	utomatic
Nonlinear settings	
Relative tolerance:	1.0E-4
Maximum number of iterations:	25
✓ Damped Newton	
Highly nonlinear problem	
Manual tuning of damping p	parameters
hillal damping factor	
Minimum damping factor.	4,50
Restriction for step size update	
- ☑ Augmented Lagrangian solve	r
✓ Augmented Lagrangian solve	The same of the sa
✓ Update augmentation composition	The same of the sa
	The same of the sa
✓ Update augmentation components:	0.0010

We did not change advanced part of the Solver Parameters

Coarse simulation results

Specific simulation results and conclusions

- Maximum temperature is within the core of heater resistance location
- Minimum temperature spots are due to the wire-bonding pads position
- Silicon high conductivity provides uniform die temperature distribution

MarsLab-UPC wind sensor team, Thank You for Your attention!

L. CASTANER

M. DOMINGUEZ

N. JIMENEZ

L. KOUALSKI

J. RICHRT

COMSOL

NOVEMBER 17-19 2010, PARIS, FRANCE