

FINITE ELEMENT ANALYSIS OF CHEMICAL REACTION KINETICS AND TRANSPORT PHENOMENA OF A SOLID STATE COMBUSTION SYNTHESIS

Venkata V. K. Doddapaneni and Sidney Lin* Dan F. Smith Department of Chemical Engineering Lamar University, Beaumont, TX 77710, USA

> Presented in COMSOL Conference 2019 Boston, MA

Nitride Materials

- Aluminum Nitride, Silicon Nitride, Boron Nitride, Zirconium Nitride, Tantalum Nitride
- Outstanding thermal, optical, and mechanical properties at high temperatures
- Solar and automotive industries and LED applications
- Our focus is silicon nitride because of its applications as a heat sink in LED

Figures are taken from "THE STORY OF SILICON NITRIDE" a brief narrative by Amedica Corporation.

Conventional Methods for Si₃N₄ Synthesis

Carbothermal Reduction

$$3SiO_{2(s)} + 6C_{(s)} + 2N_{2(v)} \xrightarrow{\rightarrow}{} Si_{3}N_{4(s)} + 6CO_{(v)}$$

Direct Nitridation

$$3Si_{(s)}+2N_{2(v)}\rightarrow Si_3N_{4(s)}$$

Diimide Decomposition

$$SiCl_{4(s)} + 6NH_{3(v)} \rightarrow Si(NH)_{2(s)} + 4NH_{4}Cl_{(s)}$$
$$3Si(NH)_{2(s)} \xrightarrow{N_{2}} Si_{3}N_{4(s)} + N_{2(g)} + 3H_{2(g)}$$

Expensive and time consuming

Self-propagating High-temperature Synthesis

Self-propagating High-temperature Synthesis (SHS)

SHS of 3 Si + 2 NaN₃ + 0.25 Si₃N₄ + 0.5 SiC for Si₃N₄ /SiC Composite

SHS-SiC/Si₃N₄

Reactor and Reactant Pellet

Dimensions of the Reactor and Reactant Pellet:

	Reactor	Pellet
Length	304.8 mm	127.0 mm
Diameter	127.0 mm	25.4 mm

Reaction Mechanism

Reaction Mechanism

Momentum Transfer

Steady State Navier-Stokes Equation and Continuity Equation:

$$\rho \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla p + \nabla \cdot (\mu (\nabla \boldsymbol{u}) + (\nabla \boldsymbol{u})') - \frac{2}{3} \mu ((\nabla \cdot \boldsymbol{u})\boldsymbol{I})$$

 $\nabla (\rho u) = 0$

where

 ρ is the density of nitrogen, [kg/m³] \boldsymbol{u} is the velocity of nitrogen, [m/s] p is the nitrogen pressure, [Pa] μ is the viscosity of nitrogen, [Pa-s] \boldsymbol{I} is the identity matrix

Momentum Transfer (Contd..)

Boundary Conditions

- > At the reactor inlet : $u_{in} = 0.00001 \text{ [m/s]}$
- > At the reactor outlet: P = atmospheric pressure (10135[Pa])
- Interface between nitrogen gas and the pellet and reactor walls : no slip condition (u = 0 [m/s])

Heat Transfer in Nitrogen

$$\rho C p \left(\frac{\partial T}{\partial t} + \boldsymbol{u} . \nabla T \right) = \nabla . \left(k \nabla T \right)$$

Initial Condition

Initial temperature of the nitrogen gas is 25°C

Boundary Conditions

- > At the inlet: Temperature of nitrogen gas is 25°C
- At the outlet: Convection dominated boundary condition
- Convective heat transfer to the nitrogen gas from the pellet surface:

$$-\boldsymbol{n}.\left(-k\nabla T_{p}\right)=h\times\left(T_{p}-T_{f}\right)$$

Heat Transfer inside Reactant Pellet

$$\rho C p\left(\frac{\partial T}{\partial t}\right) = \nabla . \left(k \nabla T\right) + Q$$

Initial Condition

Initial temperature of the reactant pellet is 25°C

Boundary Conditions

- At the ignition Surface: $-n.(-k\nabla T_p) = 5 \times 10^7 [W/m^2]$ for 5 sec
- ► Heat loss from the pellet surface to the surroundings: $-n \cdot (-k \nabla T_p) = -\varepsilon \times \sigma \times (T_p^4 - T_{\infty}^4) - h \times (T_p - T_f)$
- Heat Source:

$$\boldsymbol{Q} = \Delta \boldsymbol{H}_2 \times \frac{1}{3} \left(\frac{-d\boldsymbol{C}_{Si}}{dt} \right) + (\Delta \boldsymbol{H}_1) \times \left(\frac{-d\boldsymbol{C}_{NaN_3}}{dt} \right) + \Delta \boldsymbol{H}_{vap} \times (-\boldsymbol{k}_{Na} \times \boldsymbol{C}_{Na})$$
 13

Reaction Kinetics

Gilicon Nitridation:

$$3Si_{(s)} + 2N_{2(g)} \rightarrow Si_{3}N_{4(s)}$$
$$\frac{-dC_{Si}}{dt} = 3 \times C_{Si} \times k_{Si,o} \times exp\left(\frac{-E_{Si}}{RT_{p}}\right)$$

where

 $\rightarrow \frac{-dC_{Si}}{dt}$ is the rate of consumption of silicon nitride, [mol/m³/s]

 $\sim C_{Si}$ is the concentration of silicon nitride at any time (t), [mol/m³]

- \succ $k_{Si,o}$ is the pre-exponential factor for formation of silicon nitride, [sec⁻¹]
- \rightarrow $-E_{Si}$ is the activation energy for the formation of silicon nitride, [J/mole]
- ➢ R is the gas constant, [8.314 J/mole/K]
- > T_p (x, y, z, t) is the temperature of the pellet , [K]

Decomposition of Sodium Azide:

$$NaN_{3(s)} \rightarrow 1.5N_{2(v)} + Na_{(l)}$$

$$\frac{-dC_{NaN_3}}{dt} = C_{NaN_3} \times k_{NaN_3,o} \times exp\left(\frac{-E_{NaN_3}}{RT_p}\right)$$

where

- $\rightarrow \frac{-dC_{NaN3}}{dt}$ is the rate of consumption of sodium azide, [mol/m³/s]
- \succ C_{NaN3} is the concentration of sodium azide at any time (t), [mol/m³]
- \succ $k_{NaN_3,o}$ is pre-exponential factor for sodium azide decomposition,[sec⁻¹]
- \rightarrow $-E_{NaN_3}$ is the activation energy for sodium azide decomposition, [J/mole]
- ➢ R is the gas constant, [8.314 J/mole/K]
- \succ T_p (x, y, z, t) is the temperature of the pellet, [K]

U Vaporization of Sodium:

$$Na_{(l)} \rightarrow Na_{(v)}$$

$$\frac{dC_{Na}}{dt} = \frac{-dC_{NaN_3}}{dt} \qquad if \ Tp < 1,151K$$

$$\frac{dC_{Na}}{dt} = \frac{-dC_{NaN_3}}{dt} + (-k_{Na} \times C_{Na}) \quad if \ Tp \ge 1,151K$$

Decomposition of Si_3N_4:

$$Si_{3}N_{4\,(s)} \rightarrow 3Si_{(s)} + 2N_{2\,(g)}$$

$$\frac{dC_{Si_{3}N_{4}}}{dt} = \frac{1}{3}C_{Si}k_{Si,0}\exp(\frac{-E_{Si}}{RT_{p}}) - k_{Si_{3}N_{4}}C_{Si_{3}N_{4}} \qquad T_{p} \ge 2,151K$$

Temperature History

Temperature History on Centerline

Concentrations History on Centerline

Concentration Histories

Silicon Nitride Dilution

Conclusions

- A time dependent three-dimensional finite element analysis model is developed to study the SHS of silicon nitride via 3Si + 2 NaN₃ + 0.2 Si₃N₄ → 1.2 Si₃N₄ + 2Na + N₂.
- Momentum transfer, heat transfer, temperature dependent thermodynamic properties and reaction kinetics are integrated in the model.
- Temperature history, reaction rates, reaction conversion, combustion front movement, and the impact of silicon nitride diluent on the SHS process are presented.

Thank You!

Future Work

- Nitrogen diffusion through the porous reaction pellet.
- High temperature thermal conductivity measurement.
- Phase change (α -Si₃N₄ $\rightarrow \beta$ -Si₃N₄).
- Pellet porosity change.