

Adiabatic Calorimetry of a Thermal Runaway Reaction

Prof. Cornelius F Ivory and Dr. Marc Levin Voiland School of Chemical Engineering and Bioengineering Washington State University Pullman, WA

COMSOL Conference October 3, 2019

Background

Testing energetic materials in the APTAC

<u>(Automatic Pressure Tracking</u> <u>Adiabatic Calorimeter)</u>

Accounting for the total heat evolved in adiabatic calorimeter experiments typically assumes that the cell absorbs heat from the sample uniformly across the cell.

In some circumstances, this seems to be unrealistic

Consider testing of an explosive material, such as di-tert-butyl peroxide (DTBP), in the APTAC.

Charging too much material in an APTAC cell could damage the calorimeter so testing is sometimes performed with only 2-3 ml (1¹/₂ to 2¹/₂ g) of material in a standard *glass* test cell.

Thermal conductivity (Engineering ToolBox, etc.)

k_{titanium}

≈ 22 W/m-K (15 – 25 W/m-K)

k_{glass}

 \approx 1 W/m-K (0.8 – 1.2 W/m-K)

Approach

To understand the behavior in an APTAC cell, a COMSOL Multiphysics[®] model was developed in 2D-Axisymmetric geometry:

- Heat transfer including radiation
- Exothermic reaction (DTBP as a test case)
- Fluid flow including natural convection
- Transient behavior

GEOM + Model

Assumptions include:

- 1. Thick glass (3 mm) or thin titanium (0.5 mm) cell
- 2. 2D axisymmetric geometry
- 3. Various volumes of reactive solution (25 wt% DTBP in toluene)
- 4. Wall heaters match sample TC temperature
- 5. Turbulent flow, k- ε model, in liquid and vapor
- 6. Symmetrical, donut-shaped magnetic stirrer @ 500 RPM
- 7. Nitrogen vapor phase; pressurized nitrogen bath
- 8. Simple, 1st-order, T-dependent kinetics, with ΔH_{rxr}
- 9. Radiant heat transfer from heaters across nitrogen bath
- 10. Ignore thermal expansion of liquid
- 11. Ignore evaporation/condensation of toluene or DTBP
- 12. Ignore liquid-vapor equilibrium
- 13. Fixed, flat gas-liquid interface
- 14. 2D-axisymmetric flow

Data and Simulation

Thermal runaway reaction of a 20% solution of di-tert. butyl peroxide (DTBP) in toluene.

- 1. "Good" agreement between experiment and simulation
- 2. Significant spatial variation in 3D model vs 0D model
- 3. Variation due to thermal inertia of glass reactor
- 4. Recoil may be due to missing condensation on glass

- 1. Compare with lab results (reactivity, fluid flow)
- 2. Include condensation on reactor walls
- 3. Compare high charge & low charge results
- 4. Convert to a 3D model

Questions?