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Introduction: Atomic Layer Deposition (ALD)

What is ALD?

▪ Thin film deposition technique praised for high quality, 
conformal, dense films with atomic level thickness 
control

Critical Features:

▪ Sequential exposure of  surface to saturating precursors

▪ Low growth rates (0.1 nm/s)

▪ Vacuum process

Applications:

▪ Semiconductors

▪ Solar Cells

▪ Optical Filters
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N. Parsons, Gregory & George, S.M. & Knez, Mato. (2011). Progress and future directions for atomic layer deposition 

and ALD-based chemistry. MRS bulletin / Materials Research Society. 36. 865.10.1557/mrs.2011.238

Temporal ALD



Introduction: Spatial ALD
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Why Spatial ALD?

▪ Ultra-fast, uniform thin films deposited at low temperatures

▪ Industrially viable, high-throughput processing

Critical Feature of  Spatial ALD Reactors:

▪ Successful spatial separation of  the precursors

Types of  Spatial ALD Reactors:

▪ Roll-to-Roll (Flexible Substrates)

▪ In-line deposition head (Sheet-to-Sheet)

▪ Rotary stage (Batch Processing)

Poodt et al. (2012) J. Vac. Sci. Technol.
http://www.solaytec.com/



Overview: Air Hockey Reactor

Operation:

▪ The vents in the deposition region suspend the substrate on 

a bed of  fluid

▪ Precursor separation is achieved through a barrier gas stream 

placed between the precursor vents

▪ Atmospheric pressure operation

Challenges:

▪ The deposition gap is a function of  the flow parameters

▪ Deposition gap is critical to prevent precursor mixing

𝑀𝑔 = න
0

𝑅

2𝜋𝑟 𝒑 − 𝑝𝑎 𝑑𝑟

4

Motivation and Approach:

• Develop a model to predict the flotation height

• Investigate how different operating conditions 

affect precursor separation and utilization



Part I: Flotation Height



Summary – Poster Session
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Hypothesis: The air hockey table will behave according to the porous table model at the limit of  an infinitely sized 

array with infinitely small vertical jets

Visit my Poster – Thursday 6:00-7:00PM for more detailed information



Part II: Diffusion Model



Air Hockey Reactor:

▪ Force balance determines 𝑁2 flow 

rate

Deposition Head Reactor:

▪ All parameters are set

Air Hockey Reactor:

▪ Force balance determines 𝑁2 flow 

rate

Deposition Head Reactor:

▪ All parameters are set

Diffusion Model Definition
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𝑁2𝑁2 Recessed - Air Hockey Reactor:

▪ Different geometry; identical 

operation

DHRR-AHRAHR

Exhaust Vents

𝑁2 𝑁2𝑁2 𝐻20𝑇𝑀𝐴

Substrate



Regimes of  Operation

(1) CVD Regime:

▪ Precursor mixing occurs in overlap region

(2) Precursor Deficient Regime 

▪ Nonuniform surface concentration

▪ Insufficient precursor utilization 

(3) ALD Regime:

▪ Effective precursor separation

▪ High surface concetration
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(1)

(2)

(3)



Deposition Head Reactor (DHR)
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50 𝑚𝑙/𝑚𝑖𝑛

500 𝑚𝑙/𝑚𝑖𝑛

CVD Regime:

▪ Large deposition gaps

▪ Low barrier gas flow

ALD Regime:

▪ Small deposition gaps < 200 um

▪ Barrier gas flow > 250 ml/min

Precursor Deficient:

▪ Low precursor flow

▪ Large deposition gaps



Air Hockey Reactor (AHR)

Small Deposition Gaps (50 um):

▪ Effective precursor separation at all conditions except small 

deposition gaps

▪ 𝑄𝑃𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟 > 𝑄𝐵𝑎𝑟𝑟𝑖𝑒𝑟
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Precursor Deficiency:

▪ Sensitive to deposition height and 

precursor flow rate

▪ Pumping the exhaust vents can allow for effective separation 
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𝑑 = 50 𝑢𝑚
𝑄𝑃𝑟𝑒 = 100 𝑚𝑙/𝑚𝑖𝑛



Recessed – Air Hockey Reactor (R-AHR)

▪ Identical Operation to AHR with improved ALD regime in small deposition gap

▪ The recessed region diminishes the force contribution from the precursor flow

▪ Effect increases with increasing depth

▪ Tradeoff  is low precursor surface concentration, greater barrier gas flow
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𝐻20 Surface 
Loss 

𝑑 = 50 𝑢𝑚
𝑄𝑃𝑟𝑒 = 100 𝑚𝑙/𝑚𝑖𝑛



Part III: Precursor Utilization



Defining Precursor Utilization

What is it missing?

1. Precursor adsorption surface reaction

▪ Surface limited reaction

2. Substrate translational motion

▪ Introduction of  unreacted surface

3. Time dependency
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𝑅𝐴 ≡ 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒
𝑘𝑎𝑑𝑠 ≡ 𝐴𝑑𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑠0 ≡ 𝑆𝑡𝑖𝑐𝑘𝑖𝑛𝑔 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡
𝜃𝐴 ≡ 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝐴
𝐶𝐴 ≡ 𝐵𝑢𝑙𝑘 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴

𝑅𝐴(𝑡, 𝑥) = 𝑘𝑎𝑑𝑠𝑠0 1 − 𝜃𝐴 𝑡, 𝑥 𝐶𝐴

▪ Diffusion model alone does not adequately quantify 

precursor efficiency

▪ The surface reaction consumes precursor during operation

𝐹𝐼𝑁 = 𝐹𝑂𝑈𝑇 + 𝐹𝑟𝑥𝑛

▪ Define precursor utilization based on unreacted precursor

𝜂𝐴 = 1 −
𝐹𝑂𝑈𝑇
𝐹𝐼𝑁

𝑥100

Is it possible to define a stationary 

model to quantify precursor utilization?



Proposed Stationary Method
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𝑪𝟏 𝑪𝟐

𝑪𝑵

∙∙∙

𝑼 Method:

▪ Simulate space-dependent model with global 

model of  large N CSTR in series

▪ Map time domain to space domain for surface 

coverage

𝜃𝑎𝑑𝑠 𝑡, 𝑥 ⇒ 𝜃𝑎𝑑𝑠(𝑥)
𝑅𝐴 𝑡, 𝑥 ⇒ 𝑅𝐴(𝑥)

▪ Solve space-dependent transport of  species and 

laminar flow interfaces

▪ Calculate precursor efficiency

𝒙

CSTR in Series

ቚ𝜽
𝒙=𝑳

= 𝟎. 𝟎ቚ𝑪
𝒙=𝟎

= 𝑪𝟎



Hypothesis
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𝑪𝟎

▪ If  the initial concentration is too high, all unreacted 

precursor will leave through the outlet

▪ Lowers precursor utilization

▪ Increasing deposition gap

▪ Each set of  initial conditions will result in a different 

expression for 𝜃(𝑥)

▪ This will adjust the reaction rate and solve for 

concentration



Conclusions/Future Work

Conclusions:

▪ DHR: Both CVD and ALD Regimes

▪ AHR: Sensitive to process parameters at low deposition gaps

▪ R-AHR: Diminishes precursor force contribution, tradeoff  with surface concentration

▪ Without surface reactions, precursor utilization can not be determined

▪ Current focus is on improvement of  precursor efficiency
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Future Work:

▪ Experimentally validate operating regimes through stationary deposition

▪ Quantitatively compare reactor type efficiency

▪ Use computational study as baseline for scaling air hockey table spatial ALD reactor
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