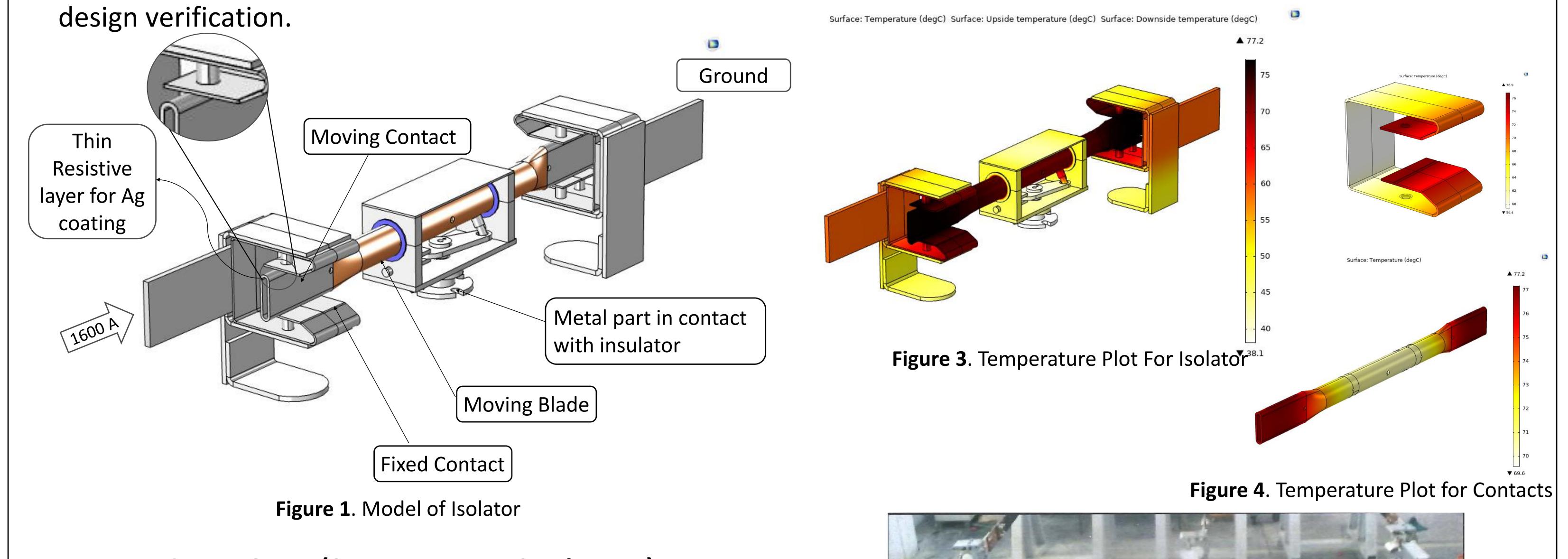
Thermal Validation of Air Break Disconnector


H. S. Saiger, I. Jain, G. Tapiawala

Raychem Innovation Centre, Raychem RPG Ltd, Vadodara, GJ, India

INTRODUCTION: Disconnectors provide electrical seclusion for maintenance in power systems. Disconnectors are subjected to a temperature rise due to continuous flow of current. As the temperature rise tests are time consuming, a model (Fig 1) is developed in COMSOL[®] including a coupled electromagnetic-thermal simulation to determine the temperature rise in the system for

RESULTS:

- The temperature rise results are obtained due to nominal flow of rated current as shown in Fig 3.
- The highest temperature rise is seen at the contacting area i.e. on Fixed & Moving Contact as shown in Fig 4.
- These values are the most important values in terms of steady state temperatures.

NUMERICAL MODEL (3D, Frequency Stationery)

- Model simulates the disconnector undergoing electromagnetic heating.
- Electric Currents (ec) and Magnetic Fields (mf) interfaces are coupled to obtain the finite element solution for volumetric electromagnetic losses.
- Contacts & connections are modelled separately to account for contact resistance in Heat Transfer in Solids (ht) interface as shown in Fig 2.

Electromagnetic Heating	Heat equation	
$Q = \frac{1}{2} Re \left(J \cdot E + i\omega B \cdot H \right)$	$K\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}\right) = -Q$	

Contact modelling:

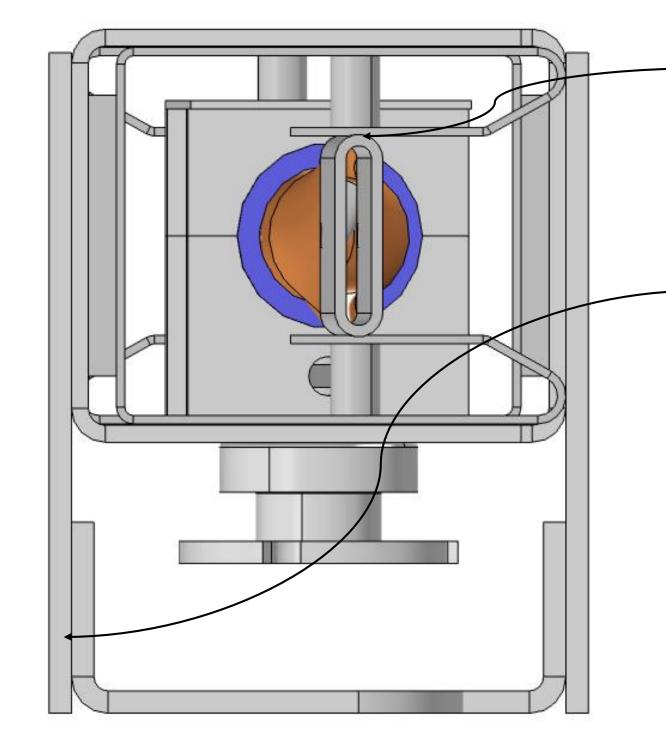

- Constriction Conductance Model Gap Conductance
- Thermal Friction Electromagnetic losses

Figure 5. Test Object (3–phase)

Part	Sim Rise ° C	Exp Rise ° C	Variation %
Fingers	47	48.3	2
Moving Contact	47.2	48.4	2.5
Terminal Pad	31.2	37.6	17
Metal part in contact with insulator	8.1	7.4	-9

Table 2. Isolator Model Temp Rise Values Comparison

Figure 2. Contact & Connection Modelling

- 1. Main Contact modelling:
- Thermal Resistive Layer for Ag coated surfaces.
- Spring Contact Pressure of 70kPa
- **2. Bolted Connection modelling:**
- No additional coating/layer
- Contact pressure of 80kPa for bolted connections

Part	Value W/m ² K
Cylindrical (Rod)	3.5
Vertical & Horizontal Flats	4
	· • •

Table 1. Heat transfer Coefficient values

CONCLUSIONS:

- Simulation results are verified with test results.
- Thermal stability is analyzed and is certified with the threshold limit stated in IEC 62271-102:2018.
- Verified analysis can be extrapolated to reduce number of tests, to improve performance, to reduce cost for developing reliable design.

REFERENCES:

- 1. David Simek, The Thermal Model and Temperature Rise Test of Disconnector, FEEC BUT, Technicka 3082/12
- 2. IEC 62271-102:2018
- 3. COMSOL Heat Transfer Module Users Guide

Excerpt from the Proceedings of the 2019 COMSOL Conference in Bangalore