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Abstract: The magnetic field gradient produced 
by an electromagnet gripper head depends on its 
design. Stochastic Methods offer certain 
robustness to the design optimization process. In 
this paper, Improved Discrete Particle Swarm 
Optimization (IDPSO) searching technique is 
applied to the shape and magnetic field gradient 
optimization of an electromagnet head. The 
magnetic field and forces are computed using 
COMSOL. The aim of the optimization is the 
search of an optimal pole shape geometry 
leading to a homogeneous magnetic field 
distribution and the desired holding force in the 
region of interest. 
 
Keywords: Improved Discrete Particle Swarm 
Optimization, Electromagnet Design. 
 
 
1. Introduction 
 
Electromagnet grippers are commonly used for 
handling ferrous parts in foundries. (1) These 
grippers offer simple compact construction with 
no moving parts, uncomplicated energy supply, 
flexibility in holding complex parts and reduced 
number of set-ups. (5) For optimal performance 
of electromagnetic devices, it is necessary to 
perform design optimization of shape and 
parameters of their magnetic circuit, size and 
position of the current windings, magnetic 
properties of the used magnetic materials, etc.  
The traditional optimization methods based on 
trial-and-error procedures are not very suitable, 
especially for highly complex and multivariable 
optimization problems because they are time 
consuming and not accurate.  Therefore, the 
development of new and more efficient methods 
for inverse optimization and automation of entire 
optimization process are always desired. 
 
Optimization methods are usually divided into 
two categories: the gradient-based (determinis-
tic) search methods and non-gradient-based 

(stochastic) search methods. While former ones 
need computation of the gradient of the objective 
function, the latter ones work directly with the 
values of the objective function, and are more 
convenient in cases where it is difficult or even 
impossible to compute exactly the gradient of the 
objective function. (7) 
 
In electromagnetic device optimization it is a 
common problem to design devices which will 
result with desired values of magnetic holding 
forces with uniform flux density at several 
certain points. Since the exact expression of the 
gradient function is impossible, therefore, the 
usage of deterministic optimization methods is 
excluded. Hence, for such optimization problems 
designers utilize stochastic methods. Genetic 
Algorithms (GA), Evolutionary Strategies (ES) 
or Particle Swarm Optimization (PSO) are such 
stochastic methods which have become very 
popular in the computer aided design of 
electromagnetic devices.  (7) 
 
In order to obtain an approximate solution of an 
electromagnet parameter optimization, some new 
concepts have been proposed in recent years. 
They include applications of Genetic Algorithm 
approach (8), simulated annealing (9) and 
adaptive simulated annealing (10)] However, the 
application of particle swarm optimization (PSO) 
and their variants to electromagnet parameter 
design has not been fully explored in the 
literature. 
 
In this paper we apply an improved particle 
discrete swarm optimization (IDPSO) searching 
technique to shape optimization of pole shape 
geometry of a simple electromagnet. We are 
searching for optimal pole shape modifications 
leading to a homogeneous magnetic flux density 
and holding force in a certain region. 
 
  



2. Theoretical Background of IDPSO 
 

The initial ideas on particle swarms of 
Kennedy and Eberhart were essentially 
aimed at producing computational 
intelligence by exploiting simple analogues 
of social interaction, rather than purely 
individual cognitive abilities (15)(12). The 
first simulations (12) were influenced by 
Heppner and Grenander’s work (11) and 
involved analogues of bird flocks searching 
for corn. These soon developed (12) into a 
powerful optimization method— Particle 
Swarm Optimization (PSO).  

 
PSO is an optimization algorithm that is 

based on swarm intelligence principle (12) 
which is widely used in application domains 
such as function optimization, neural 
network training, fuzzy system control and 
so on at present (14). It has been proved to 
be very effective for solving global 
optimization in various engineering 
application such as image and video analysis 
and design and optimization of 
communication networks. There are also 
some applications in fault diagnosis and 
maintenance optimization. However, most 
applications in this field are using PSO to 
train ANN or optimize the parameters of 
FLs. A direct application of PSO variant in 
maintenance optimization will be shown in 
this paper. 
 
2.1 Basic PSO Algorithm Description 
 

The Particle Swarm Optimization (PSO) 
algorithm is a heuristic approach motivated 
by the observation of social behavior of 
composed organisms such as birds flocking 
(Figure 1). A number of simple entities – the 
particles – are placed in the search space of 
some problem or function, and each 
evaluates the objective function at its current 
location. Each individual in the particle 
swarm is composed of D dimensional 
vectors, where D is the dimensionality of the 
search space.  
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Figure 1. Bird Flocking of PSO 
 

The current position ݔԦ௜ can be considered 
as a set of coordinates describing a point in 
space. If the current position is better than 
any that has been found so far, then the 
coordinates are stored in the vector	݌Ԧ௜. The 
value of the best function result so far is 
stored in a variable that can be called	݌Ԧ௚. 
The objective, of course, is to keep finding 
better positions and updating	݌Ԧ௜ and	݌Ԧ௚. 
New points are chosen by adding 	ݒԦ௜ 
coordinates to	ݒԦ௜, and the algorithm operates 
by adjusting	ݒԦ௜, which can effectively be 
seen as a step size. The steps of 
implementing PSO were shown as follows: 

 

1) Initialize a population array of particles 
with random positions and velocities on 
D dimensions in the search space. 

2) Loop 
3) For each particle, evaluate the desired 

optimization fitness function in D 
variables. 

4) Compare particle’s fitness evaluation 
with that of its	݌Ԧ௜. If current value is 
better than that of	݌Ԧ௜, then set 	݌Ԧ௜ equal to 
the current coordinates. 

5) Identify the particle in the neighborhood 
with the best success so far, and assign it 
to the variable	݌Ԧ௚. 

6) Change the velocity and position of the 
particle according to the following 
equation: 



 
ݐԦ௜ሺݒ ൅ 1ሻ ൌ ߱ ∙ ሻݐԦ௜ሺݒ ൅ ܿଵ ∙ Ԧ௜݌ଵ൫ݎ െ

ሻ൯ݐԦ௜ሺݔ ൅ ܿଶ ∙ Ԧ௚݌ଶሺݎ െ  ሻሻ                 (1)ݐԦ௜ሺݔ

ݐԦ௜ሺݔ ൅ 1ሻ ൌ ሻݐԦ௜ሺݔ ൅ ݐԦ௜ሺݒ ൅ 1ሻ             (2)
  

Where:  is the inertia weighting; c1 and 
c2 are acceleration coefficients, positive 
constraint; r1 and r2 are the random 
numbers deferring uniform distribution 
on [0, 1]; i represents ith iteration. 

7) If a criterion is met (usually a sufficiently 
good fitness or a maximum number of 
iterations), exit loop.  

8) End loop 

In PSO, every particle remembers its 
own previous best value as well as the 
neighborhood best; therefore it has a more 
effective memory capability than the GA. 
PSO is also more efficient in maintaining 
the diversity of the swarm, since all the 
particles use some information related to the 
most successful particle in order to improve 
themselves, whereas in GA, the worse 
solutions at every generation are discarded 
and only the good ones are saved for next 
generation. Therefore in GA the population 
evolves around a set of best individuals in 
every generation. In addition, PSO is easier 
to implement and there are fewer parameters 
to adjust compared with GA (12). 
 
2.2 Discrete PSO (DPSO) Algorithm 

Description 
 

The general concepts behind 
optimization techniques initially developed 
for problems defined over real-valued vector 
spaces, such as PSO, can also be applied to 
discrete valued search spaces where either 
binary or integer variables have to be 
arranged into particles. When integer 
solutions (not necessarily 0 or 1) are needed, 
the optimal solution can be determined by 
rounding off the real optimum values to the 
nearest integer. DPSO has been developed 
specifically for solving discrete problems. 
The new velocity and position for each is 

determined according to the velocity and 
position update equations given by (8) and 
(9). 

ݐԦ௜ሺݒ ൅ 1ሻ ൌ ሺ߱݀݊ݑ݋ݎ ∙ ሻݐԦ௜ሺݒ ൅ ܿଵ ∙
Ԧ௜݌ଵ൫ݎ െ ሻ൯ݐԦ௜ሺݔ ൅ ܿଶ ∙ Ԧ௚݌ଶሺݎ െ  ሻሻሻ       (3)ݐԦ௜ሺݔ
ݐԦ௜ሺݔ ൅ 1ሻ ൌ ሻݐԦ௜ሺݔ ൅ ݐԦ௜ሺݒ ൅ 1ሻ                  (4) 

 
In equation (8), the value of velocity is 
binary or integer because round () function 
can round off the value.  
 
2.3 Improved DPSO (IDPSO) Algorithm 

Description 
 

DPSO or PSO performs well in the early 
iterations, but they have problems 
approaching a near-optimal solution. If a 
particle’s current position accords with the 
global best and its inertia weight multiply 
previous velocity is close to zero, the 
particle will only fall into a specific position. 
If their previous velocities are very close to 
zero, all the particles will stop moving 
around the near-optimal solution, which may 
lead to premature convergence of algorithm. 
All the particles have converged to the best 
position discovered so far which may be not 
the optimal solution. So, an improved DPSO 
is proposed here. 

In IDPSO, before updating the velocities 
and positions in every iteration, the particles 
are ranked according to their fitness values 
in descending order. Select the first part of 
particles (suppose mutation rate is	α, fist 
part is (1-α)) and put them into the next 
iteration directly. Regenerate the rest part of 
particles (α) randomly. In this project, we 
can regenerate the positions and velocities 
according to the following equation: 

 
௜ௗݔ ൌ ݀݊ܽݎ൫݀݊ݑ݋ݎ ∙ ൫ܵ୫ୟ୶ሺ݆ሻ െ
ܵ୫୧୬ሺ݆ሻሻ ൅ ܵ୫୧୬ሺ݆ሻ൯     (10) 

ሻݐ௜ௗሺݒ ൌ ௠௔௫ݒ െ ݀݊ݑ݋ݎ ∙ ሺ݀݊ܽݎ ൈ
ሻݐ௜ௗሺݒ								௠௔௫ሻݒ2 ∈ ሾെݒ௠௔௫,  ௠௔௫ሿ        (5)ݒ
 
  



3. Use of COMSOL Multiphysics 
 
COMSOL Multiphysics has been used to study 
and test multiple possible magnet forms to 
optimize the magnetic force. To compute and 
plot the magnetic flux density around the system 
tip, the model of the electromagnet was 
implemented in 2D, as well as in 3D.The area of 
interest experiences a magnetic force according 

to the formula 
.magF B 

, where  is the 
magnetic moment of a given particle and B is 
the gradient of the magnetic field.  
 
The involved Maxwell equations are: 

xH J   and 0B  , with constitutive 

relation 0 rB H 
. The magnetic vector 

potential A  produces the governing equation 
1( )x xA M J    of the Magnetostatics 

module in COMSOL version 4.2. 
 

 
Figure 2. Possible Solution (a) of an 
electromagnet head 
 

 
Figure 3. Convergence Plot 

 

Figure 4. Possible Solution (b) of an 
electromagnet head 
 
4. Simulation Results 
 
The aim of the simulation study is the 
investigation of the effects of modified stochastic 
operators on the shape optimization process. We 
minimized the cost function  

2 2 2 2

1

( )
mpN

F x y z o
i

C F F F F


             (6) 

where oB  is the desired constant magnetic flux 

density in the matching points ( mpN ). The 

current density impressed to the coil to get a 

value of oB =0.1 T was first estimated in some 

test runs.  
 
The variation of the number of particles with 
time to reach global optimum is shown in Figure 
5. 

 
Figure 5. Variation of particles with time 
  



5. Conclusions 
 
In optimization problems where derivatives of 
the cost functions are not available stochastic 
methods like Genetic Algorithm (GA), 
Simulated Annealing (SA), and Particle Swarm 
Optimization (PSO) can be applied. In this paper 
an improved version of PSO method was used to 
optimize the shape of a simple electromagnet 
configuration. The algorithm known from the 
literature have been combined with finite 
element code in COMSOL to study the 
performance for shape optimization problems. 
 
The true strength of PSO lies in its ability to 
statistically deliver a true global optimum, but 
there are no theoretical reasons for assuming it 
will be more efficient than other stochastic 
methods. Thus, evaluation of the performance of 
a certain PSO algorithm always depends on the 
specific characteristics of the considered 
problem. 
 
In the near future, it is planned to conduct further 
comparisons with other Swarm Intelligence (SI) 
Techniques that will show under which 
conditions these conclusions can be maintained. 
It can be expected there are some systems for 
which one of the SI techniques is better suited 
than the others. 
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7. Appendix 
 
Table 1: Magnetic Constants 
Magnetic Constants Value 

Relative Permeability ( r ) 
4e3 (Iron) 

External Current density ( oJ 
) 

1.79 
2/A m

 



 
Table 2: Magnetostatic Equations 

Magnetostatic Equations Value 
Magnetic Insulation 0A   

Continuity 1 2( ) 0nx H H 

 
Relative Permeability Isotropic 

in each 
subdomain 

 
 
 
 
Table 3: Parameters of the Coil 

Diameter of the Copper 
Wire 

1.22d mm  

Cross-section of the wire 21.13LA mm
 

Average length of the 
winding 

34.56ml cm
 

Number of windings 3714N   
Length of the coil 1283.56l m

 
Mass of the coil 12.95m kg  

External current density 1.79 6 /J e A m
 

Output voltage 41.14U V  
Output current 2.04I A  
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