
Electromagnet Shape Optimization using Improved Discrete Particle
Swarm Optimization (IDPSO)

Rhythm S. Wadhwa*1, Terje Lien2

1NTNU, 2NTNU
*Corresponding author: NTNU Valgrinda, Inst. for produksjons- og kvalitetstek., Trondheim, 7491, Norway,

rhythmsuren@ieee.org

Abstract: The magnetic field gradient produced
by an electromagnet gripper head depends on its
design. Stochastic Methods offer certain
robustness to the design optimization process. In
this paper, Improved Discrete Particle Swarm
Optimization (IDPSO) searching technique is
applied to the shape and magnetic field gradient
optimization of an electromagnet head. The
magnetic field and forces are computed using
COMSOL. The aim of the optimization is the
search of an optimal pole shape geometry
leading to a homogeneous magnetic field
distribution and the desired holding force in the
region of interest.

Keywords: Improved Discrete Particle Swarm
Optimization, Electromagnet Design.

1. Introduction

Electromagnet grippers are commonly used for
handling ferrous parts in foundries. (1) These
grippers offer simple compact construction with
no moving parts, uncomplicated energy supply,
flexibility in holding complex parts and reduced
number of set-ups. (5) For optimal performance
of electromagnetic devices, it is necessary to
perform design optimization of shape and
parameters of their magnetic circuit, size and
position of the current windings, magnetic
properties of the used magnetic materials, etc.
The traditional optimization methods based on
trial-and-error procedures are not very suitable,
especially for highly complex and multivariable
optimization problems because they are time
consuming and not accurate. Therefore, the
development of new and more efficient methods
for inverse optimization and automation of entire
optimization process are always desired.

Optimization methods are usually divided into
two categories: the gradient-based (determinis-
tic) search methods and non-gradient-based

(stochastic) search methods. While former ones
need computation of the gradient of the objective
function, the latter ones work directly with the
values of the objective function, and are more
convenient in cases where it is difficult or even
impossible to compute exactly the gradient of the
objective function. (7)

In electromagnetic device optimization it is a
common problem to design devices which will
result with desired values of magnetic holding
forces with uniform flux density at several
certain points. Since the exact expression of the
gradient function is impossible, therefore, the
usage of deterministic optimization methods is
excluded. Hence, for such optimization problems
designers utilize stochastic methods. Genetic
Algorithms (GA), Evolutionary Strategies (ES)
or Particle Swarm Optimization (PSO) are such
stochastic methods which have become very
popular in the computer aided design of
electromagnetic devices. (7)

In order to obtain an approximate solution of an
electromagnet parameter optimization, some new
concepts have been proposed in recent years.
They include applications of Genetic Algorithm
approach (8), simulated annealing (9) and
adaptive simulated annealing (10)] However, the
application of particle swarm optimization (PSO)
and their variants to electromagnet parameter
design has not been fully explored in the
literature.

In this paper we apply an improved particle
discrete swarm optimization (IDPSO) searching
technique to shape optimization of pole shape
geometry of a simple electromagnet. We are
searching for optimal pole shape modifications
leading to a homogeneous magnetic flux density
and holding force in a certain region.

2. Theoretical Background of IDPSO

The initial ideas on particle swarms of
Kennedy and Eberhart were essentially
aimed at producing computational
intelligence by exploiting simple analogues
of social interaction, rather than purely
individual cognitive abilities (15)(12). The
first simulations (12) were influenced by
Heppner and Grenander’s work (11) and
involved analogues of bird flocks searching
for corn. These soon developed (12) into a
powerful optimization method— Particle
Swarm Optimization (PSO).

PSO is an optimization algorithm that is

based on swarm intelligence principle (12)
which is widely used in application domains
such as function optimization, neural
network training, fuzzy system control and
so on at present (14). It has been proved to
be very effective for solving global
optimization in various engineering
application such as image and video analysis
and design and optimization of
communication networks. There are also
some applications in fault diagnosis and
maintenance optimization. However, most
applications in this field are using PSO to
train ANN or optimize the parameters of
FLs. A direct application of PSO variant in
maintenance optimization will be shown in
this paper.

2.1 Basic PSO Algorithm Description

The Particle Swarm Optimization (PSO)
algorithm is a heuristic approach motivated
by the observation of social behavior of
composed organisms such as birds flocking
(Figure 1). A number of simple entities – the
particles – are placed in the search space of
some problem or function, and each
evaluates the objective function at its current
location. Each individual in the particle
swarm is composed of D dimensional
vectors, where D is the dimensionality of the
search space.

()ix t


(() ())i ip t x t
 



(())g ip x t
 



(1)ix t



(1)iv t





()iv t


Figure 1. Bird Flocking of PSO

The current position ݔԦ௜ can be considered
as a set of coordinates describing a point in
space. If the current position is better than
any that has been found so far, then the
coordinates are stored in the vector	݌Ԧ௜. The
value of the best function result so far is
stored in a variable that can be called	݌Ԧ௚.
The objective, of course, is to keep finding
better positions and updating	݌Ԧ௜ and	݌Ԧ௚.
New points are chosen by adding 	ݒԦ௜
coordinates to	ݒԦ௜, and the algorithm operates
by adjusting	ݒԦ௜, which can effectively be
seen as a step size. The steps of
implementing PSO were shown as follows:

1) Initialize a population array of particles
with random positions and velocities on
D dimensions in the search space.

2) Loop
3) For each particle, evaluate the desired

optimization fitness function in D
variables.

4) Compare particle’s fitness evaluation
with that of its	݌Ԧ௜. If current value is
better than that of	݌Ԧ௜, then set 	݌Ԧ௜ equal to
the current coordinates.

5) Identify the particle in the neighborhood
with the best success so far, and assign it
to the variable	݌Ԧ௚.

6) Change the velocity and position of the
particle according to the following
equation:

ݐԦ௜ሺݒ ൅ 1ሻ ൌ ߱ ∙ ሻݐԦ௜ሺݒ ൅ ܿଵ ∙ Ԧ௜݌ଵ൫ݎ െ

ሻ൯ݐԦ௜ሺݔ ൅ ܿଶ ∙ Ԧ௚݌ଶሺݎ െ ሻሻ (1)ݐԦ௜ሺݔ

ݐԦ௜ሺݔ ൅ 1ሻ ൌ ሻݐԦ௜ሺݔ ൅ ݐԦ௜ሺݒ ൅ 1ሻ (2)

Where:  is the inertia weighting; c1 and
c2 are acceleration coefficients, positive
constraint; r1 and r2 are the random
numbers deferring uniform distribution
on [0, 1]; i represents ith iteration.

7) If a criterion is met (usually a sufficiently
good fitness or a maximum number of
iterations), exit loop.

8) End loop

In PSO, every particle remembers its
own previous best value as well as the
neighborhood best; therefore it has a more
effective memory capability than the GA.
PSO is also more efficient in maintaining
the diversity of the swarm, since all the
particles use some information related to the
most successful particle in order to improve
themselves, whereas in GA, the worse
solutions at every generation are discarded
and only the good ones are saved for next
generation. Therefore in GA the population
evolves around a set of best individuals in
every generation. In addition, PSO is easier
to implement and there are fewer parameters
to adjust compared with GA (12).

2.2 Discrete PSO (DPSO) Algorithm

Description

The general concepts behind
optimization techniques initially developed
for problems defined over real-valued vector
spaces, such as PSO, can also be applied to
discrete valued search spaces where either
binary or integer variables have to be
arranged into particles. When integer
solutions (not necessarily 0 or 1) are needed,
the optimal solution can be determined by
rounding off the real optimum values to the
nearest integer. DPSO has been developed
specifically for solving discrete problems.
The new velocity and position for each is

determined according to the velocity and
position update equations given by (8) and
(9).

ݐԦ௜ሺݒ ൅ 1ሻ ൌ ሺ߱݀݊ݑ݋ݎ ∙ ሻݐԦ௜ሺݒ ൅ ܿଵ ∙
Ԧ௜݌ଵ൫ݎ െ ሻ൯ݐԦ௜ሺݔ ൅ ܿଶ ∙ Ԧ௚݌ଶሺݎ െ ሻሻሻ (3)ݐԦ௜ሺݔ
ݐԦ௜ሺݔ ൅ 1ሻ ൌ ሻݐԦ௜ሺݔ ൅ ݐԦ௜ሺݒ ൅ 1ሻ (4)

In equation (8), the value of velocity is
binary or integer because round () function
can round off the value.

2.3 Improved DPSO (IDPSO) Algorithm

Description

DPSO or PSO performs well in the early
iterations, but they have problems
approaching a near-optimal solution. If a
particle’s current position accords with the
global best and its inertia weight multiply
previous velocity is close to zero, the
particle will only fall into a specific position.
If their previous velocities are very close to
zero, all the particles will stop moving
around the near-optimal solution, which may
lead to premature convergence of algorithm.
All the particles have converged to the best
position discovered so far which may be not
the optimal solution. So, an improved DPSO
is proposed here.

In IDPSO, before updating the velocities
and positions in every iteration, the particles
are ranked according to their fitness values
in descending order. Select the first part of
particles (suppose mutation rate is	α, fist
part is (1-α)) and put them into the next
iteration directly. Regenerate the rest part of
particles (α) randomly. In this project, we
can regenerate the positions and velocities
according to the following equation:

௜ௗݔ ൌ ݀݊ܽݎ൫݀݊ݑ݋ݎ ∙ ൫ܵ୫ୟ୶ሺ݆ሻ െ
ܵ୫୧୬ሺ݆ሻሻ ൅ ܵ୫୧୬ሺ݆ሻ൯ (10)

ሻݐ௜ௗሺݒ ൌ ௠௔௫ݒ െ ݀݊ݑ݋ݎ ∙ ሺ݀݊ܽݎ ൈ
ሻݐ௜ௗሺݒ								௠௔௫ሻݒ2 ∈ ሾെݒ௠௔௫, ௠௔௫ሿ (5)ݒ

3. Use of COMSOL Multiphysics

COMSOL Multiphysics has been used to study
and test multiple possible magnet forms to
optimize the magnetic force. To compute and
plot the magnetic flux density around the system
tip, the model of the electromagnet was
implemented in 2D, as well as in 3D.The area of
interest experiences a magnetic force according

to the formula
.magF B 

, where  is the
magnetic moment of a given particle and B is
the gradient of the magnetic field.

The involved Maxwell equations are:

xH J  and 0B  , with constitutive

relation 0 rB H 
. The magnetic vector

potential A produces the governing equation
1()x xA M J    of the Magnetostatics

module in COMSOL version 4.2.

Figure 2. Possible Solution (a) of an
electromagnet head

Figure 3. Convergence Plot

Figure 4. Possible Solution (b) of an
electromagnet head

4. Simulation Results

The aim of the simulation study is the
investigation of the effects of modified stochastic
operators on the shape optimization process. We
minimized the cost function

2 2 2 2

1

()
mpN

F x y z o
i

C F F F F


    (6)

where oB is the desired constant magnetic flux

density in the matching points (mpN). The

current density impressed to the coil to get a

value of oB =0.1 T was first estimated in some

test runs.

The variation of the number of particles with
time to reach global optimum is shown in Figure
5.

Figure 5. Variation of particles with time

5. Conclusions

In optimization problems where derivatives of
the cost functions are not available stochastic
methods like Genetic Algorithm (GA),
Simulated Annealing (SA), and Particle Swarm
Optimization (PSO) can be applied. In this paper
an improved version of PSO method was used to
optimize the shape of a simple electromagnet
configuration. The algorithm known from the
literature have been combined with finite
element code in COMSOL to study the
performance for shape optimization problems.

The true strength of PSO lies in its ability to
statistically deliver a true global optimum, but
there are no theoretical reasons for assuming it
will be more efficient than other stochastic
methods. Thus, evaluation of the performance of
a certain PSO algorithm always depends on the
specific characteristics of the considered
problem.

In the near future, it is planned to conduct further
comparisons with other Swarm Intelligence (SI)
Techniques that will show under which
conditions these conclusions can be maintained.
It can be expected there are some systems for
which one of the SI techniques is better suited
than the others.

6. References

1. R.S.Wadhwa, T.Lien and G.J.Monkman
Robust Prehension for ferrous metalcasted
product families, Proceedings of MITIP, 2011

2. Campbell, in Castings. Butterworth-
Heinemann, 2003

3. S.R.Hoole Computer Aided Analysis and
Design of Electromagnetic Devices, 1989

4. J.D.Law Modeling of Field Regulated
Reluctance Machines, PhD Thesis, University of
Wisconsin Madison, 1991

5. G.J.Monkman and S.H.Steinmann Robot
Grippers, Wiley-VCH, 2007

6. D.T.Pham and E.Tacgin An expert system for
selection of robot grippers. Expert Systems with
Applications,1992, 5, 289-300

7. Zaoui, F., C. Marchand: Using genetic
algorithm for the optimization of electromagnetic
devices. COMPEL, vol 17, No.1/2/3, 1998,
pp.181-185

8. Billinton, R., and Abdulwhab A., (2003)

Short-term generating unit maintenance in a
deregulated power system using a
probabilistic approach, IEEE Proc., Gener.
Transm. Distrib., Vol. 4, pp. 463-468.

9. Satoh T., and Nara K., (1991) Maintenance
scheduling by using simulated annealing
method, IEEE Trans. Power Syst., Vol. 6, pp.
850-857.

10. Yellen J., Al-Khamis T. M., VERMURI S.,
LEMONIDIS L., (1992). A decomposition
approach to unit maintenance scheduling,
IEEE Trans. Power Syst., Vol.7, pp. 726–
733.

11. Heppner, H., and Grenander, U., (1990) A
stochastic non-linear model for coordinated
bird flocks, The ubiquity of chaos, pp. 233–
238. Washington: AAAS.

12. Kennedy, J., and Eberhart, R. C. (1995)
Particle swarm optimization. Proceedings of
the IEEE international conference on neural
networks IV, pp. 1942–1948.

13. Eberhart, R. C., and Kennedy, J., (1995) A
new optimizer using particles swarm theory.
Proceedings of Sixth International
Symposium on Micro Machine and Human
Science, pp. 39-43.

14. Pan Hongxia, and Wei Xiuye, (2009) Particle
Swarm Optimization Algorithm with
Adaptive Velocity and its Application to
Fault Diagnosis, 2009 IEEE Congress on
Evolutionary Computation, pp. 3075-3079.

15. Riccardo Poli, James Kennedy, and Tim
Blackwell (2007) Particle swarm
optimization, Swarm Intelligence, Vol. 1, pp.
33-57.

7. Appendix

Table 1: Magnetic Constants
Magnetic Constants Value

Relative Permeability (r)
4e3 (Iron)

External Current density (oJ 
)

1.79
2/A m

Table 2: Magnetostatic Equations

Magnetostatic Equations Value
Magnetic Insulation 0A 

Continuity 1 2() 0nx H H 

Relative Permeability Isotropic

in each
subdomain

Table 3: Parameters of the Coil

Diameter of the Copper
Wire

1.22d mm

Cross-section of the wire 21.13LA mm

Average length of the
winding

34.56ml cm

Number of windings 3714N 
Length of the coil 1283.56l m

Mass of the coil 12.95m kg

External current density 1.79 6 /J e A m

Output voltage 41.14U V
Output current 2.04I A

	conference-button:

