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2 Impact of work piece on magnetic field 
distribution and relative strength, 50 Hz 

Short coils have non-uniform fields both axially and radially.  The field is strongly 
influenced by the work piece/coil geometry and the electromagnetic penetration 
depth in the work piece. 
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3 Modelling of magnetic fields and induction 
heating with COMSOL® 

• Should the coil be voltage or current 
driven? 
 

• How big does the magnetic domain need to 
be to simulate an infinite external volume? 
i.e. when is the coil flux density estimated 
with 100% accuracy for a given applied 
magneto-motive force (NI)? 
 



4 Modelling of magnetic fields and induction 
heating with COMSOL® 

• Which domain, “single-turn” or “multi-turn” can 
be used and under what circumstances? 
 

• What mesh is required to obtain accurate results at 
different frequencies?  How do we relate this to 
the physics? 
 

• How accurately can a 2D axial symmetric model 
estimate magnetic fields and heating rates for 
cylindrical work pieces in experimental helical 
coils? 
 



5 How to find the required magnetic domain size? 
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kN = Nagaoka short coil correction 
factor.  Can be solved to double 
precision accuracy. 

Air gap flux density2 
determines the heating rate! 



6 Comparison of COMSOL® and 
analytical inductance of a current sheet 

Ratio of Magnetic 
Domain Dimensions 
to Coil Dimensions

COMSOL 
Calculated 
Inductance 

(µH)

COMSOL - 
Analytical 
Solution 

Difference   
(%)

2.00 22.7563 -13.82
4.00 25.9502 -1.72
6.00 26.2783 -0.48

10.00 26.3870 -0.07
14.00 26.4057 0.00
20.00 26.4129 0.03

Theoretical answer = 26.4051 μH. 
Ratio of 14 gives ideal results. 

Error in inductance 
is the same as for 
the flux density and 
is then squared 
when calculating 
heating rate! 
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Induction heating instrumentation 

Electrical 

conductivity accuracy 

of +/- 0.5% 

Magnetic field 

measurements 

Axial/Transverse 

From 0.1μT-30T 

+/- 1.0% AC 

Standards from 

500-2000 Gauss 

Electrical analysis:  

1. V, I, P (+/-100 W), p.f. 

2. Inductance  

3. Harmonics 

4. Current +/- 1% (usable 

up to 100 kHz) 

Standards +/- 0.01% IACS 



8 Coil and work piece 

6 mm by 1 mm wall, DHP copper 
80% IACS electrical conductivity 
Insulated with glass fibre sleeves 

A356 aluminium alloy 
48% IACS conductivity 



9 Mesh 1 



10 Induction heating using mesh 1 

At „High Frequency‟ the power induced should change by √f. 
Also the first electromagnetic penetration depth will contain 63% of 
the total current and 86% of the power, with an exponential 
gradient squared. 

Frequency 
(Hz)

Experimental 
Power         
(W)

Analytical 
Power    
(W)

Mesh 1 
Power (W)

Mesh 1- 
Analytical 
Difference 

(%)
δ 

(mm)
50 696 691 650 -6.0 14.50

500 N/A 2768 2604 -5.9 4.59
5000 N/A 9549 10280 7.7 1.45

50000 N/A 29697 24211 -18.5 0.46
500000 N/A 94123 25728 -72.7 0.14

Mesh 1spacing at work piece interface = 5.10
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Current = constant 988.5 A 
Electrical resistivity = constant 
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Induction heating using boundary 
meshes 

 
Frequency 

(Hz)

Experimental 
Power        
(W)

Analytical 
Power   
(W)

Mesh 2 
Power 
(W)

Mesh 2- 
Analytical 
Difference 

(%)
δ 

(mm)
50 696 691 650 -6.0 14.5

500 N/A 2768 2597 -6.2 4.59
5000 N/A 9549 8834 -7.5 1.45

50000 N/A 29697 28305 -4.7 0.46
500000 N/A 94123 90029 -4.3 0.14

Mesh 2 spacing at work piece interface = 0.02

Boundary meshes allow accurate calculation to  
extremely high frequency.  Mesh spacing should be < δ. 



13 „Single-turn‟ vs. „Multi-turn‟ domain 

 
50 Hz 500 Hz 5 kHz 50 kHz 500 kHz 

δ = 
11 mm 

δ 
 

= 
3.5 mm 

δ 
 

= 
1.1 mm 

δ 
 

= 
0.35 mm 

δ 
 

= 
0.11 mm 

To centreline of coil 

If δ < tubing diameter, must use ‟Single-turn‟ domain and 
ideally a current driven coil,  

voltage driven „Multi-turn‟ results will be wrong.   



14 Dimensionless flux density vs. position 
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17 Conclusions 
• Current driven coils are recommended, they 

give the correct magneto-motive-force (NI). 
 

• 14 times the coil size is sufficient to 
simulate an infinite external volume, for 2D 
axial symmetric models. 
 

• „Single-turn‟ domain is recommended, it 
gives correct results at all frequencies. 



18 Conclusions 

• „Multi-turn‟ domain can be used if the electro-
magnetic penetration depth is greater than the coil 
tubing diameter. 
 

• Due to the extremely steep current gradients at 
the surface of the work piece at high frequencies 
(small δ), boundary meshes should be used to 
give a mesh spacing < δ. 
 

• Magnetic field estimates with error < 1-2% and 
heating estimates with errors< 6% can be 
obtained. (Note:  New calorific measurements 
have verified errors to be < 2%!) 
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22 Equations for 1D analytical and 2D axial 
symmetric model 
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23 Factors for analytical solutions 
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