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Abstract: A resonant MEMS sensor for 
viscosity and mass density measurements of 
liquids was modeled. The device is based on 
Lorentz-force excitation and features an 
integrated piezoresistive readout. The core 
sensing element is a rectangular vibrating plate 
suspended by four beam springs. Through a 
conductive layer on the beam springs a 
sinusoidal excitation current is driven. In the 
field of a permanent magnet, the Lorentz-force 
excites time-harmonic plate vibrations. 
Evaluating the characteristics of the resonant 
system allows estimation of viscosity and mass 
density of the liquids. In this paper, we present 
a semi-numerical simulation approach that 
combines advantages of analytical and FEM 
modeling. This combination reduces required 
computing power and memory capacity. The 
good agreement between measured and 
simulated results indicates that such 
simulations are a convenient method to predict 
the sensor characteristic and to support the 
sensor design.  
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1. Introduction 
 

Monitoring of viscosity and mass density 
of liquids is mandatory in many industrial 
applications. By detecting spurious variations 
and implementing feedback loops the process 
quality can be maintained. Typical laboratory 
instruments for viscosity measurement impose 
shear deformations in the liquid and measure 
the associated externally applied shear force 
[1]. Most often, rotational movements of 
cylinders or cones are utilized. Sample 
preparation for such devices is time-
consuming and error-prone. Moreover, due to 
bulky mechanical parts they can not be 
sufficiently miniaturized. Thus, for online 
monitoring applications miniaturized devices 
such as thickness shear mode (TSM) 
resonators [2] or micro-electro-mechanical 
systems (MEMS) structures like vibrating 
beams [3] or cantilevers [4] offer some 
decisive advantages. 

The presented sensor for viscosity and 
density measurements is based on MEMS 
technology and is suitable for integration in 
online monitoring systems. The core sensing 
element is a rectangular vibrating plate 
suspended by four beam springs [5]. The 
Lorentz-force excited plate vibrations are 
damped by the liquid under test. By evaluating 
the characteristics of the resonant system, it is 
possible to extract viscosity and mass density 
of the liquid. 

The sensor design was supported by FEM 
modeling. A 3D-model of the sensor was 
developed in order to investigate the influence 
of design variations on the sensor behavior and 
to find the optimal geometry of the sensor 
elements. Finally, the reliability of the model 
was verified by comparing the laboratory 
measurements with the simulations results.  
 
2. Sensor Device  
 

The schematic of the sensor device is 
depicted in Fig. 1. The rectangular silicon plate 
measures 100×100×20 µm³ whereas each 
supporting beam spring is 5 µm wide and 
20 µm high. The length lspring of the beams was 
subjected to FEM simulations. Values in the 
range of 150 to 750 µm were considered. The 
silicon beams bear a conductive metal layer 
consisting of 80 nm thin titanium and 570 nm 
thin gold films. In the field of a permanent 
magnet (flux density B = −320 mT·iz), the 
imposed sinusoidal current ie(t) excites lateral 
deflections of the springs leading to time-
harmonic in-plane oscillations of the 
suspended plate.  

The ends of two beam springs are forked. 
One prong carries the metal layer for the 
excitation current while the other consists of a 
piezoresistive element (R3 and R4, 
respectively). The resistor dimensions are 
50×5×20 µm³ with a typical electric resistance 
of a few kΩ. These resistors accompanied with 
two additional resistors placed on the silicon 
rim (R1 and R2) form a half Wheatstone bridge. 
Due to plate vibrations, the piezoresistors R3 
and R4 are subjected to either compressive or 
tensile stress. This changes their electric 



resistance resulting in a bridge unbalance. As 
output signal we analyze the differential 
voltage ud(t).  
 
3. Modeling  
 

Without the liquid load the vibrating 
structure can be modeled very efficiently by 
solely using the undamped solid-stress-strain-
mode of COMSOL multiphysics. The 
frequency response analysis yields the 
resonant frequency as a characteristic 
parameter of the system. Immersing the sensor 
in a liquid shifts the resonant frequency 
towards lower values, depending on the 
viscosity and mass density of the liquid. The 
accurate FEM modeling of the sensor behavior 
requires Navier-Stokes-mode for the 
subdomain with the liquid. Owing to the high 
aspect ratio of some sensor elements and the 
large dimensions of the additional fluid 

subdomain compared to the resonant structure, 
this approach results in high memory and CPU 
usage. Thus, pure numerical simulations 
utilizing finite element method are 
inappropriate in this case. On the other hand, 
simplified analytical modeling yields results 
deviating up to 30% from the measured values 
[6]. Therefore, we propose a semi-numerical 
approach that combines advantages of 
analytical and numerical modeling.  

Figure 2 shows the geometry of the 3D-
FEM model. In order to reduce the number of 
mesh elements, the silicone rim with the 
additional piezoresistors is omitted. 
Dimensions of the model elements agree with 
the values specified in the sensor design 
chapter. The model involves two application 
modes. The conductive-media-mode calculates 
the current distribution in the conductive layer 
on the top of the springs and plate (violet 
colored area in inset of Fig. 2). For this 

Figure 1. Schematic of the sensor device illustrating suspended plate and piezoresistive readout. The plate 
vibrations are excited by the Lorenz force. The piezoresistors R1-4 form a Wheatstone bridge supplied by the 
voltage ub. The resistors R3 and R4 are subjected to alternating compressive and tensile stress due to the plate 
deflection. 

Figure 2. Geometry of the 3D-FEM model. The color-bar indicates the displacement amplitude in y-direction at 
resonant frequency when using air as fluid. The inset shows the forked end of one spring with the piezoresistor 
(highlighted area) and the interface area where the stress was evaluated. 
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purpose, the boundary condition of the 
conductive layer on the right side is set to 
imposed current density and on the left side to 
the ground. This corresponds to the schematic 
representation in Fig. 1. All other boundaries 
in this mode are set to electric insulation. 

The second application mode is the solid-
stress-strain mode. Here, the results from the 
first mode are used to impose the acting 
Lorentz-force on the vibrating structure. The 
body load (force/volume) for the conductive 
layer in the second mode is set to 
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where Jx_emdc and Jy_emdc are current densities 
in the conductive layer calculated by the first 
application mode (emdc) and B = 320 mT is 
the used magnetic flux density. All other 
subdomains in this mode are unloaded. The 
liquid-structure interaction is implemented as 
additional mass and damping to the springs 
and the plate. The required parameters are 
gained through an analytical model of the 
rectangular vibrating cantilever [7]. The model 
is valid if the vibration amplitudes are far 
smaller than the beam geometry, the 
surrounding liquid is assumed to behave 
incompressible, the beam cross-section is 
uniform over the entire length, and the beam 
length greatly exceeds its nominal width. 
These requirements are all fulfilled in our case. 

To account for interaction of the four 
sensor springs with the surrounding liquid, the 
hydrodynamic function Γ(ω) must be 
calculated at first. The exact analytical result 
for Γ(ω) for a beam with a circular cross-
section is given by 
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where j 1= −  is the imaginary unit, 

Re = ρω h²/(4η) is the related Reynolds 
number, and K0 and K1 are the modified Bessel 
functions of the third kind. The density and 
viscosity of the liquid are denoted by ρ and η, 
respectively. Furthermore, ω is a characteristic 
angular frequency of the vibration and 
h = 20 µm is the height of the cantilever beam. 
The rectangular cross-section of the sensor 
springs can be taken into account by 
multiplying Eq. 2 with an appropriate 
correction function Ω(ω ) as follows 

( ) ( ) ( )rect circ .ω ω ωΓ = Γ Ω                     (3) 

The exact expression of the complex function 
Ω(ω ) is stated in [7]. Using the hydrodynamic 
function, we can now calculate the added mass 
per unit length of the springs due to liquid 
loading [6] 
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where Γ′ is the real part of the hydrodynamic 
function Γrect(ω). Note that the added mass is 
frequency dependent. Finally, the mass density 
of the springs used for the simulations reads 
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Vspring = Aspring·lspring denotes beam volume, 
where Aspring = 5×20 µm² is the beam cross-
section area. 

With respect to its large lateral surface, the 
springs vibrate out-of-plane. Such a vibration 
mode generates a velocity field in the liquid 
that is associated with high damping. This 
damping is accounted for by using a Rayleigh 
damping model where the mass damping 
parameter α is set to zero and the stiffness 
damping parameter is given by 
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Here, γ denotes the viscous damping 
coefficient and E = 169 GPa is the Young’s 
modulus of silicon in [110] direction [8]. In 
Eq. 6 two supporting springs forming one side 
of the H-shaped sensor are modeled as one 
long doubly-clamped, uniformly loaded beam 
cantilever with a spring constant of 
k = 32w³hE/L³, where w = 5 µm is the 
cantilever width and L = 2 × lspring is the total 
cantilever length. The added damping 
coefficient per unit length of the springs 
γ'a,spring can be calculated using the imaginary 
part of the hydrodynamic function Γ" 
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Contrary to the springs, the suspended 
plate vibrates in an in-plane mode. Thus, 
mainly shear waves associated with a low 
damping of the plate are excited in the 
surrounding liquid. It can be shown [6] that the 
major part of additional mass and damping due 
to liquid interaction stems from the vibrating 
springs. Therefore, we only consider the front 
face of the rectangular plate which vibrates in 
an out-of-plane mode (hatched area in Fig. 4) 
and use Eq. 4 multiplied with a plate length to 
calculate its additional mass density. For 
reasons of simplification, all other effects that 



influence the plate added mass as well as the 
added damping of the plate are neglected. 
Moreover, the conductive metal layer is 
modeled as 650 nm thick solely gold film, i.e., 
the influence of titanium is also neglected. The 
boundary conditions in the solid-stress-strain 
mode are set to fix at the ends of the beam 
springs and to free for the rest. 

The sensor is fabricated on a silicon-on-
insulator (SOI) wafer. The 20 µm thick device 
layer is p-doped silicon which is inherently 
piezoresistive. The sensor utilizes this effect 
for the readout of the plate deflection. On the 
device layer the four piezoresistors are aligned 
in the [110] direction. In this case, the change 
of the resistance due to applied stress reads 

l l 0 ,R Rπ σΔ =                      (8) 

where R0 is the resistance at zero stress and the 
longitudinal piezoresistance coefficient 
amounts to π1 = 71.8·10−11 Pa−1. The 
longitudinal stress σl is calculated by 
evaluating the average force in x-direction at 
the interface between the piezoresistor and the 
spring (indicated in the inset of Fig. 2). We 
record both the frequency response of the 
amplitude and the phase of ΔR. The resistance 
change ΔR is directly proportional to the 
bridge output ud which is evaluated in the 
experimentally setup. 
 
4. Results  
 

First, the impact of geometry variations on 
the resonant frequency of the scarcely-damped 
(i.e., in air vibrating) system is investigated. 
Experimentally, the plate deflection is 
measured with a common micro system 
analyzer, whereas in COMSOL the frequency 
response analysis of the solid-stress-strain 
mode is used. With decreasing beam length the 
resonant frequency shifts to higher values. 
This is particularly important if so called 
Maxwellian liquids are measured. Contrary to 
the Newtonian liquids, the measurement 
results depend on the vibrating frequency of 
the probe. Thus, the possibility to sense the 
viscosity in a wide frequency range is 
inevitable, if the full rheological behaviour of a 
liquid is of interest. We fabricated five sensor 
embodiments with 150, 300, 450, 600, and 
750 µm beam length and compared their in-
air-vibrating resonant frequency with the 
simulation values. Figure 3 shows a photo-
micrograph of a sensor embodiment with 
600 µm beam length.  

The comparison of measured and 
simulated results is illustrated in Fig. 4. The 
resonant frequencies of the five sensor 
embodiments differ in the range of about one 
decade. The best agreement with the measured 
results demonstrates the sensor with the 
shortest length of the beams, where the relative 
error amounts to only 2%. With increasing 
beam length, the relative error becomes higher 
and reaches the value of 35% for the senor 
with 750 µm beams. One reason for this 
deviation is the spurious underetching of the 
silicon structures arising from the deep 
reactive-ion etching (DRIE) process, during 
the sensor fabrication. Moreover, the possible 
intrinsic stress of the vibrating structure is also 
not considered. These effects primary affect 
the beams rather than the plate and are, hence, 
more emphasized by the sensors with longer 
beams. Nevertheless, the FEM simulations 
proved to be a suitable tool to predict the 
frequency range of the sensors, which is of 
particular importance for the sensor design.  

 
Figure 3. Photomicrograph of a suspended plate 
sensor embodiment with 600 µm beam length. 

Figure 4. Dependence of resonant frequency on the 
length of the springs lspring for sensor operation in 
air. 



Next, we investigate the influence of the 
liquids on the resonant behavior of the system. 
Here, glycerol-water mixtures are chosen as 
test liquids because they are inexpensive, non-
toxic, easy to handle, and feature a well-
defined dependence between glycerol 
concentration, mass density, and viscosity. 
However, the sensing principle is not limited 
to glycerol-water mixtures and, therefore, the 
device can be utilized for viscosity and density 
monitoring of arbitrary liquids in the viscosity 
range of up to 100 mPas. For this 
investigation, a sensor with 300 µm spring 
length is simulated and subsequently 
experimentally characterized. In the 
laboratory, the frequency of the bridge 
excitation current ie is swept and the bridge 
voltage ud evaluated (Fig. 1). More details 
about measurement setup can be found in [9]. 
In COMSOL, we use again the frequency 
response analysis recording ΔR (see Eq. 8). 
The highest resonant frequency and quality 
factor can be achieved when the device is 
operated in air (i.e., approximately no viscous 
damping). When the sensor is immersed in the 
sample liquids, the resonant frequency fr 
shiftes to the lower values and the damping 
factor D increases depending on the mass 
percentage of glycerol (i.e., the viscosity and 
the mass density of the mixture, Fig. 5). 

In order to estimate the damping factor, we 
assume that the resonant system can be 
approximated by a second order behavior and 
fitt the amplitude response 
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to the results. In Eq. 9, A0 represents the output 
signal at static plate deflection (f = 0 Hz), D is 
the damping factor of the system, and f0 is the 
natural resonant frequency of the system 
without damping ( 2

0 1 2rf f D= −  is the 

frequency where ΔR reaches its maximum).  
Figure 6 depicts simulation results for different 
glycerol-water mixtures in comparison with 
measured values. Whereas the trend of both 
characteristics is similar to the measured ones, 
the absolute values reveal the maximum 
deviation of about 15% for resonant frequency 
and below 20% for damping factor. The reason 
for that are numerous simplifications of the 
applied sensor model. Neither the measured 
nor the simulated sensor output can be exactly 
described by a system of second order as 
assumed for the fitting procedure (Eq. 9) in 
order to obtain the damping factor D. This 
mismatch increases with higher damping 
factor. Since the plate damping was totally 
neglected, the simulations generally yield a 

Figure 5. Simulated relative amplitude and phase of the resistance change ΔR as a function of the excitation 
current frequency. For the simulation, air and different glycerol-water mixtures were considered. The spring 
length of the sensor was set to 300 µm. 

Figure 6. Dependence of the resonant frequency 
and the damping factor on the glycerol percentage 
of the mixtures. The spring length of the sensor was 
set to 300 µm.



smaller damping factor, except in the higher 
viscosity range (i.e., increasing glycerol 
percentage) where the damping factor 
estimation is more inaccurate. For precise 
modeling of the piezoresistive elements, the 
stress tensor and the piezoresistance matrix of 
silicon must be utilized over the whole volume 
of the piezoresistor, whereas we just use the 
longitudinal stress σl according to Eq. 8. 
Moreover, the influence of the ambient 
temperature (25°C) is only considered 
regarding the viscosity and density of the 
liquid under the test, whereas its impact on the 
mechanical properties of the sensor materials 
is neglected. 

Despite the partly higher relative error, the 
simulations enable to get a glimpse of the trend 
of the output characteristics and to 
approximately estimate the resonant frequency 
and the damping. 
 
5. Summary and Conclusion 
 

Modeling of a resonant MEMS sensor 
suitable for monitoring of viscosity and mass 
density of liquids was presented. The device is 
based on Lorentz-force excitation and features 
an integrated piezoresistive readout. The core 
sensing element of the device is a rectangular, 
in-plane vibrating plate suspended by four 
beam springs which is damped by the liquid 
under test. Evaluating the properties of the 
resonant system allows the estimation of 
viscosity and mass density of the liquid. 

The model involves two application 
modes. The first one calculates the current 
distribution in the conductive layer. These 
results are then used to impose the acting 
Lorentz-force on the vibrating structure. The 
liquid-structure interaction is implemented as 
additional mass and damping to the springs 
and the plate. The required parameters are 
gained utilizing an analytical model of the 
rectangular vibrating cantilever. 

The combination of analytical and 
numerical modeling provides a convenient 
way to reduce computing power and memory 
capacity. The simulation results give the right 
trend of output characteristics for varied 
viscosity and help to estimate the resonant 
frequency and the damping. The model is also 
useful for the sensor design as the effects of 
various geometry variations can be studied 
qualitatively. 
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