A HIGH-EFFICIENCY MICRO CHANNEL REGENERATIVE HEAT EXCHANGER FOR FLUID PROCESSING

Ozgur E. Yildirim Ph.D., and Zihong Guo Ph.D. Intellectual Ventures Laboratories Bellevue, WA

Oct 13, 2011 COMSOL User Conference

INTELLECTUAL VENTURES[®]

OUTLINE

• On Intellectual Ventures: a sampling of R&D activities

• Micro-channel Heat Exchanger

- Concept introduction
- fluidic, thermal and structural analysis
- Prototype assembly and testing
- conclusions

Intellectual Ventures Laboratories

IV Main Lab Machine Shop– Bellevue, WA

Physics Engineering Food Science Epidemiological modeling Health technologies and many more areas

Wide variety of projects

Photonic fence- target & shoot mosquitos with lasers

Photonic fence- target & shoot mosquitos with lasers

TerraPower nuclear reactor- burn depleted Uranium fuel

TerraPower Reactor Traveling-Wave Reactor

ColdChain- Keep vaccines cold passively for months

super insulated vaccine container

Modernist Cuisine project

Not your typical "cookbook" Lots of science, computer models and state of art photography to explain physics of food. And yes, recipes too. www.modernistcuisine.com

Copyright © 2011 Intellectual Ventures Management, LLC (IV). All rights reserved.

Micro-channel Heat Exchanger

Micro-channel Heat Exchanger Development Process

CAD models

Computer models for understanding and design

Physical model for testing and verification

Specific design intended for **sterilization** of **water** or similar liquids.

How it works

- applies thermal energy to a liquid
- then captures it back (→ regenerative)
- Achieves thermal cycling

- very efficient, low power consumption
- small
- modular (scalable)

"Unit" flow loop and scalability

Schematic– One flow loop

Analyses performed (multiple physics analyzed independently)

2D thermal analysis with flow

Heat loss tradeoffs (unrecovered heat in fluid and loss through membrane by axial conduction)

With Channel Length

With Membrane Thermal Conductivity

Longer is betterbut with diminishing returns

•there is an optimal membrane thermal conductivity for any given length.

*For case where liquid is water , channels are 40 um deep separated by 10 um thick membranes, average flow speed is 33.8 mm/s

Pressure drop with fully developed velocity profile in rectangular duct

Membrane collapse problem

Alternating channels of high-low pressure (order of 2-3 bars difference)

Channels would collapse without support

Structural analysis of membrane deflection

Limiting the membrane deformation

Because pressure loading decreases in axial direction, supports can be made more sparse in lower pressure regions

- Other complications:
- But uneven spacing of supports will cause pressure drop profile to be nonlinear
- Interstitial velocity will vary axially hold time calculation may not be straightforward

3D deformation analysis – linear Cartesian grid

Shown below is a portion of the 12.5 um thick PEEK (3 GPa) membrane under 2.5 bar load supported by a Cartesian array of 100um by 100um square posts with 200 um X-Y gap between.

3D deformation analysis – staggered Cartesian grid

Shown below is a portion of the 12.5 um thick PEEK (3 GPa) membrane under 2.5 bar load supported by a staggered Cartesian array of 100um by 100um square posts with 200 um X-Y gap between.

Pressure drop consequences of support posts: Linear vs. staggered

$$K = 0.75 * 10^{10} \frac{1}{m^2}$$

for wide open channels (no posts)

 Support pillars add 40% flow resistance compared to wide open channels → compensate by adding width

• No significant fluidic difference between linear vs. staggered support arrays

Fully integrated device

Exploded view of a pair unit

Mid Layer Construction

Photographs showing support posts

Arrays of support columns

Staggered support columns

Ten Pair Construction

All ten pairs are assembled by heat seal under pressure .

Device final assembly

Device final assembly – exploded view

Thermal modeling of integrated device

Geometric (physical) model

Thermo-fluidic (physics) model

Temperature distribution in the device

Results on efficiency

- Device was able to cycle the water temperature from ~ 20 C → 120 C → 20 C within a few seconds with excellent heat recapture. (Water temperature ΔT between the inflow and outflow at location 5 was less than 0.5 C)
- Water temperature △T between the inlet and outlet manifolds increased from 0 to 1.5 C.
 - The manifolds and the metal blocks at the inlet/outlet might have contributed to the temperature differences.
- As expected, the electrical power supplied was larger than explained by unrecovered amount during regeneration based on other inefficiencies that were not optimized
 - The package assembly also heated up and conducted heat axially.
 - Heat loss to the ambient environment added further inefficiency to the system.

Closing remarks

- COMSOL used effectively in developing the microchannel regenerative heat exchanger concept on thermal, fluidic, and structural fronts
- Physical prototype confirmed high regenerative efficiency of the basic concept. Additional inefficiencies (imperfect thermal contact from heaters, package design etc.) were not the primary focus of this project.

Questions?

BACKUP SLIDES

Basic causal relations and tradeoffs

Fluid kinematics analysis :

Residence Time Distribution – *RTD*

What is Residence Time Distribution (RTD)?

Computed RTD- 1 mm downstream, Pe = 10000*

* Estimated Pe in the device is 35,000, but results are insensitive to Pe for Pe>10,000

Computed RTD at two Peclet numbers

Concentration profile of the tracer after stepwise introduction of a "tracer" and average residence time θ_{av} has elapsed

Pe = 100

H(t)

40 µ

$$Pe = \frac{UL_c}{D}$$

Pe = 10000