## Development of AR light guide

# 

#### BY NKORNI KATTE

#### WILBERFORCE UNIVERSITY

COMSOL CONFERENCE 2020

It is believed that these devices will not only be used for entertainment but will also play a central role in education, medicine and communication.

VR optics shuts out the outside world from the user, hence the need for AR which superimposes the virtual images while permitting the user to continue viewing the real world

### System Performance

-Light weight

-Compact and manufacturable (The mechanical assembly must be easy to put together)

-Have a good field of
view, not exceptional
-Low F-number
-Good image quality
with essentially low
distortion

|                    | Specification<br>(minimum) | Specification<br>(maximum) | Reference design | DesignWK10_S1 | DesignWK10_S2 | DesignWK10<br>_S3 |
|--------------------|----------------------------|----------------------------|------------------|---------------|---------------|-------------------|
| System Perfor      | mance Table                |                            |                  |               |               |                   |
| Field of<br>View   | 10                         | 70                         | NA               |               | 34            | 36                |
| Image<br>Quality   | NA                         | NA                         | NA               | Average       | Average       | Better            |
| Weight in<br>grams | 10                         | 200                        | NA               | 82.148        | 36.78         | 185.88            |

#### Aberration Coefficients

| % Date         | Mar 29 2020, 15:2   | 25                |    |           |
|----------------|---------------------|-------------------|----|-----------|
| % Table        | Table 1 - Aberratio | on Evaluation 1   |    |           |
| % Radial index | Meridional index    | Zernike coefficie | nt |           |
|                | (                   | 0                 | 0  | -1.54E-19 |
|                | :                   | 1                 | -1 | 1.74E-19  |
|                |                     | 1                 | 1  | -5.52E-20 |
|                | :                   | 2                 | -2 | -5.37E-20 |
|                | :                   | 2                 | 0  | -9.39E-20 |
|                | :                   | 2                 | 2  | 6.64E-23  |
|                | :                   | 3                 | -3 | 1.88E-19  |
|                | :                   | 3                 | -1 | 6.69E-21  |
|                | :                   | 3                 | 1  | -2.11E-20 |
|                | :                   | 3                 | 3  | -4.91E-20 |
|                | 4                   | 4                 | -4 | -9.95E-21 |
|                |                     | 4                 | -2 | -5.73E-22 |
|                |                     | 4                 | 0  | -3.65E-21 |
|                | 4                   | 4                 | 2  | 1.25E-21  |
|                | 4                   | 4                 | 4  | 6.13E-22  |
|                | !                   | 5                 | -5 | -1.08E-20 |
|                | !                   | 5                 | -3 | -1.41E-19 |
|                | !                   | 5                 | -1 | -1.18E-19 |
|                | !                   | 5                 | 1  | 4.92E-20  |
|                | !                   | 5                 | 3  | 3.95E-20  |
|                | !                   | 5                 | 5  | -5.84E-20 |









y x j z 

Design 3

d=600nm= 2.5e6 lines/m

x z y

d=400nm

## Manufacturability

The eye piece lenses is from Thorlabs catalog AC 254-060-A, AC 508 -060-A and FP510 the mirror could made of a thin piece of glass with some silver coating,

The waveguide is rectangular box of K5, BK7 or PMMA glass which will have some DOE written on one side of it.

To make the DOE should be challenging 2.5e6lines/ meter



х

R, P 7:24 PM 3/29/2020 22) ^ 📥 🔚 🌈 🕬 👬

#### **Optical Aberrations**

| % Date         | Mar 29 2020, 15:25   |                        |    |           |  |
|----------------|----------------------|------------------------|----|-----------|--|
| % Table        | Table 1 - Aberration | berration Evaluation 1 |    |           |  |
| % Radial index | Meridional index     | Zernike coefficient    | :  |           |  |
|                |                      | 0                      | 0  | -1.54E-19 |  |
|                |                      | 1                      | -1 | 1.74E-19  |  |
|                |                      | 1                      | 1  | -5.52E-20 |  |
|                |                      | 2                      | -2 | -5.37E-20 |  |
|                |                      | 2                      | 0  | -9.39E-20 |  |
|                |                      | 2                      | 2  | 6.64E-23  |  |
|                |                      | 3                      | -3 | 1.88E-19  |  |
|                |                      | 3                      | -1 | 6.69E-21  |  |
|                |                      | 3                      | 1  | -2.11E-20 |  |
|                |                      | 3                      | 3  | -4.91E-20 |  |
|                |                      | 4                      | -4 | -9.95E-21 |  |
|                |                      | 4                      | -2 | -5.73E-22 |  |
|                |                      | 4                      | 0  | -3.65E-21 |  |
|                |                      | 4                      | 2  | 1.25E-21  |  |
|                |                      | 4                      | 4  | 6.13E-22  |  |
|                |                      | 5                      | -5 | -1.08E-20 |  |
|                |                      | 5                      | -3 | -1.41E-19 |  |
|                |                      | 5                      | -1 | -1.18E-19 |  |
|                |                      | 5                      | 1  | 4.92E-20  |  |
|                |                      | 5                      | 3  | 3.95E-20  |  |
|                |                      | 5                      | 5  | -5.84E-20 |  |

#### Conclusions

| 1<br>1 | <ul> <li>Demonstrated the design of AR Device</li> <li>Need to have started with Sequential Ray tracing in order to</li> </ul> |
|--------|--------------------------------------------------------------------------------------------------------------------------------|
|        | evaluate image quality                                                                                                         |
|        | <ul> <li>Quantify the weight of device, based weight of lenses and<br/>waveguide</li> </ul>                                    |
|        | <ul> <li>Calculate FOV using laws of reflection and diffraction</li> </ul>                                                     |
|        | equation                                                                                                                       |
|        | <ul> <li>Characterized rise in Temperature for Design 3</li> </ul>                                                             |
|        | <ul> <li>Used Zemax and COMSOL back and forth (Somethings I</li> </ul>                                                         |
|        | could not do in Zemax, I could do with COMSOL)                                                                                 |
|        | <ul> <li>Had some trouble with the DOE in Zemax</li> </ul>                                                                     |
|        | <ul> <li>Should be able to refine the simulations</li> </ul>                                                                   |
|        |                                                                                                                                |
|        |                                                                                                                                |