Veröffentlichungen und Präsentationen

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation de la capacité d’un micro-commutateur RF par ingénierie inverse

D. Peyrou
LAAS, Groupe M2D, Paris

La présentation repose sur l’analyse de l’influence de la rugosité du diélectrique sur la capacité à l’état bas.

Numerical Simulation of Moving Boundary Problems with the ALE Method: Validation in the Case of a Free Surface and a Moving Solidification Front

M. Carin
Université de Bretagne Sud

This work investigates numerical simulations of problems involving moving boundaries. The first case concerns the simulation of incompressible Newtonian fluid flow problems with free surfaces in the presence of surface tension (the sloshing problem). The second case deals with a problem of heat transfer in the presence of an advancing solidification front (the Stefan problem).

Modeling the Coupled Mass Transfer Phenomena During Osmotic Dehydration of Fresh and Frozen Mango Tissues

J. Floury[1], Q.T. Pham[2], and A. Le Bail[3]
[1] UMR STLO–INRA–Agrocampus
[2] School of Chemical Engineering and Industrial Chemistry, UNSW
Sydney, Australia.
[3] UMR CNRS GEPEA–ENITIAA, Nantes

In this paper, we present a mathematical model for simulating the mass transfer, during the osmotic dehydration of mango cubes. The mass balance equation for the transport of each constituent is established separately for intracellular and extracellular volumes but accounts for the mass exchange across the cell membrane and the shrinkage of whole tissue.

Modeling of Drops Spreading on Patterned Surfaces

J. Frassy[1], C. Lécot[2], C. Delattre[3], and A. Soucemarianadin[1]
[1] LEGI UMR 5519, Grenoble
[2] LAMA UMR 5127, Le Bourget-du-Lac
[3] LETI, CEA Grenoble

We present simulations of drops spreading on heterogeneous surfaces. The droplet height is the solution of a time-dependent non-linear fourth order partial differential equation, which is solved using COMSOL Multiphysics. In the fully wetting case, we compare our results with experimental data and with previous results reported in the literature. The simulation results reveal how ...

Heat and Mass Transfer Investigation in Fabrics

S. Quiniou[1], F. Lesage [1], V. Ventenat[2], and M.A. Latifi[1]
[1] Laboratoire des Sciences du Génie Chimique, Nancy
[2] Centre de recherche Décathlon, Villeneuve d’Ascq

In this paper, an investigation of heat and mass transfer in fabrics used in the manufacture of comfortable sportswear is presented. It is based on a model which is described by partial differential equations representing the mass balance of free and adsorbed water and vapour and the heat balance in the fabric. The model involves several unknown physical and transfer parameters. Two ...

A Tool for Studying the Ecology of Hydrosystems

D. Peyrard[1], Ph. Vervier[1], S. Sauvage[1], J.M. Sánchez-Pérez[1], and M. Quintard[2]
[1] Laboratoire d’Ecologie des Hydrosystèmes, Toulouse
[2] Institut de Mécanique des Fluides de Toulouse

The hyporheic zone is defined as an area where water and matter exchange through the sand, gravel, sediments and other permeable soils under and beside streams. Its impact on the hydro-system function is determined by the proportion of subsurface biogeochemical reactions and the fluxes of water exchanging with the hyporheic zone and flowing through the porous sediments. The objective of our ...

Modelling of Tissue Morphogenesis as the Resultant of Constitutive Cells Activities

L. Forest
Laboratoire Techniques de l'Imagerie, de la Modélisation et de la Cognition, Faculté de Médecine, Domaine de la Merci

The aim of this work is to study tissue morphogenesis as a consequence of the constitutive cells dynamics. Tissue morphogenesis is modelled as a cellular system coupled with a global chemical control. p> Two concrete examples are presented, the secondary growth of conifer trees and the epithelial invagination.

Elastic and Poro-Elastic Models of Ventricular Dilatation in Hydrocephalus

S. Momjian[1], and D. Bichsel[2]
[1] Hôpitaux Universitaires de Genève, Switzerland
[2] HESSO Ecole d’Ingénieurs de Genève, Switzerland

Elastic and poro-elastic models of ventricular dilatation in hydrocephalus are presented in this paper. An important result was the accumulation of fluid capping the horns of the ventricles. This indicates the importance of interstitial fluid in calculating of the deformation of the brain.

Quick Search

31 - 38 of 38 First | < Previous | Next > | Last