Veröffentlichungen und Präsentationen

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Estimating Cerebral Blood Flow using Electro-mechanical Modeling and Impedance Tomography Measurements

A. Jeremic, and T. Gadkari
McMaster University, Hamilton, ON, Canada

In this paper we propose a coupled electromechanical finite element model which combines the Navier-Stokes Equations of blood flow in an immersed boundary and the resulting deformed geometry with an electromagnetic model, which describes the electric field in the presence of deformation/structure changes caused by the blood flow in arteries.We derive least-squares estimates of the pressure drop ...

Finite-element Modeling of Elastic Surface Modes and Scattering from Spherical Objects

O. Falou1, J. C. Kumaradas2, and M. C. Kolios1,2
1Dept. of Electrical and Computer Engineering, Ryerson University, Toronto, ON, Canada
2Dept. of Physics, Ryerson University, Toronto, ON, Canada

In this work, backscatter from an elastic sphere was used to validate the computational model against analytical solutions (Faran theory).Agreements between analytical and finite element solutions were found in the scattered far-field over a range of frequencies of interest (10 - 70 MHz). Oscillations of the elastic sphere at various resonance frequencies (peaks in the power spectrum) were also ...

Multiphysics Modeling of Cellular Arrays Using Periodic Minimal Surfaces – A Drug and Gene Delivery Application

J.I. Rey, A.J. Llewellyn, R.J. Connolly, J.P. Jimenez, A.M. Hoff, and R.A. Gilbert
University of South Florida, Tampa, FL, USA

Minimal surfaces are found in nature from crystalline structures to biological nano and micro structures such as biomembranes, and osseous formations in sea urchin. An application to electrically mediated drug and gene delivery is presented. Periodic level surfaces which approximate minimal surfaces are used to generate a geometric representation of tissue. A method to create such structures ...

Numerical Simulation of Magnetic Drug Targeting with Flow – Structural Interaction in an Arterial Branching Region of Interest

A. Morega, A. Dobre, and M. Morega
University Politehnica of Bucharest, Bucharest, Romania

We report a numerical study on the blood – magnetic carrier aggregate flow in an external magnetic field, for applications such as magnetic drug targeting. The arterial system morphology is complex and patient-related therefore more realistic numerical simulations request medical image-based reconstruction to generate computational domains. Simpleware package is used to generate the ...

Local Electroporation of Single Adherent Cells by Micro-Structured Needle Electrodes

K. K. Sriperumbudur[1], P. J. Koester[1], M. Stubbe[1], C. Tautorat[1], J. Held[2], W. Baumann[1], and J. Gimsa[1]
[1] University of Rostock, Chair of Biophysics, Gertrudenstr. 11a, 18057 Rostock, Germany
[2] Microsystem Material Laboratory, Department of Microsystems Engineering (IMTEK), University of Freiburg, Germany

In spite of its low throughput, Patch-Clamp is the established method for intracellular measurements of the transmembrane potential. To address this problem, we have developed new biosensor-chips with micro-structured needle electrodes (MNEs). MNE-penetration of single cells growing on the MNE-tips leads to a situation comparable to the whole-cell mode in classical Patch Clamp. MNE-penetration ...

Microstimulation in The Brain: Does Microdialysis Inuence the Activated Volume of Tissue?

D. Krapohl[1][3], S. Loeffler[2], A. Moser[2], and U.G.Hofmann[1]

[1]Institute for Signalprocessing, University of Luebeck, Lübeck, Germany
[2]Institute for Neurology, University of Luebeck, Lübeck, Germany
[3]Department of Information Technology and Media, Mid Sweden University, Sundsvall, Sweden

Deep Brain Stimulation (DBS) has been established as an effective treatment for Parkinson's disease and other movement disorders. The stimulation is currently administered using tetrode-macroelectrodes that target the Subthalamic Nucleus (STN). This often leads to side effects which bias the surrounding areas, e.g. the speech centre. Targeting a specific brain region can better be achieved with ...

A Mean Field Approach to Many-particles Effects in Dielectrophoresis

O. Nicotra, and A. La Magna
CNR-IMM Sezione di Catania, Catania, Italy

One of the major applications for dielectrophoresis is the selective trapping and fractionation in lab-on-a-chip devices. Nevertheless, many-particle effects due to high concentrations of biological material around electrodes can cause a rapid decrease of trapping efficiency in dielectrophoretic devices. In this contribution we present a new approach based on a drift-diffusion dynamics to study ...

Some Clinical and Computational Studies On Haemodynamics In Stenosed Artery

A. Chanda, A.R. Choudhury, G. Ray, K. Dasgupta, and D. Nag
Jadavpur University, Kolkata, West Bengal, India

Atherosclerosis in arteries is caused by the formation of stenosis : fatty depositions, on the artery wall. In current medicine, the practice is to observe the maximum percentage occlusion at any arbitrary cross-section and diagnose the patient on that basis, which might not always present the real picture due to non-uniformity of the stenosis thickness. The present work attempts to simulate the ...

Finite Element Analysis Approach for Optimization of Enzyme Activity for Enzymatic Bio-fuel Cell

Y. Song, and C. Wang
Florida International University, Miami, FL, USA

Enzymatic biofuel cells (EBFCs) are miniature, implantable power sources, which use enzymes as catalysts to perform redox reaction with biological fuels such as glucose. In this study using COMSOL Multiphysics, we use an EBFC chip, having three dimensional, highly dense micro-electrode arrays, fabricated by C-MEMS micro-fabrication techniques. Glucose oxidase (GOx) is immobilized on anodes for ...

Dynamic Simulation Of Particle Self-Assembly Applied To Microarray Technology

V. Di Virgilio, A. Coll, S. Bermejo, and L. Castañer
Universitat Politecnica de Catalunya, Barcelona, Spain

In this work we want to explore some techniques, microfluidic and electrospray-ionization based, suitable for dynamic microarrays\' fabrication. The fabrication techniques are based on manipulation and self-assembly of selective coated micro and nanobeads. The simulation will include electro-osmotic flow, species transport, and electrostatics.

Quick Search