Veröffentlichungen und Präsentationen

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

On the Simulation of the Metabolism in Mammalian Cells using Homogenization Methods

M. Hanke, and M. Cabauatan-Villanueva
School of Computer Science and Communication, Royal Institute of Technology, Stockholm, Sweden

The simulation of the metabolism in mammalian cells becomes a severe problem if spatial distributions must be taken into account. Especially the cytoplasma has a very complex geometric structure which cannot be handled by standard discretization techniques. In the present paper we propose a homogenization technique for computing effective diffusion constants. This is accomplished by using a ...

Multiphysics Modeling of Cellular Arrays Using Periodic Minimal Surfaces – A Drug and Gene Delivery Application

J.I. Rey, A.J. Llewellyn, R.J. Connolly, J.P. Jimenez, A.M. Hoff, and R.A. Gilbert
University of South Florida, Tampa, FL, USA

Minimal surfaces are found in nature from crystalline structures to biological nano and micro structures such as biomembranes, and osseous formations in sea urchin. An application to electrically mediated drug and gene delivery is presented. Periodic level surfaces which approximate minimal surfaces are used to generate a geometric representation of tissue. A method to create such structures ...

Modeling Heat and Mass Transfer in Bread During Baking

V. Nicolas[1,2], J.P. Ploteau[1], P. Salagnac[2], P. Glouannec[1], V. Jury[3], and L. Boillereaux[3]
[1]Laboratoire d’Ingénierie des MATériaux de Bretagne – Equipe Thermique et Energétique, Université Européenne de Bretagne, Lorient Cedex, France
[2]Laboratoire d’Etudes des Phénomènes de Transfert et de l’Instantanéité : Agro-industrie et Bâtiment, Université de La Rochelle, La Rochelle Cedex, France
[3]Laboratoire de Génie des Procédés, Environnement, Agroalimentaire, ENITIAA, France

In this paper, we present a first model carried out with COMSOL Multiphysics to model bread baking, considering heat and mass transfer coupled with the phenomenon of swelling. This model predicts the pressures, temperatures and water contents evolutions in the dough for different energy requests. First results obtained are analyzed according to various physical parameters in order to better ...

Numerical Validation of the Efficiency of Dual-Frequency Radiofrequency Ablation

A. Candeo[1] and F. Dughiero[1]
[1]Department Electrical Engineering, University of Padova, Padova, Italy

Radiofrequency Ablation (RFA) represents a valid alternative for treating liver metastases in medically complicated patients. Conventional devices currently operate at 500 kHz, due to good conducting properties of tissues. However, the use of lower frequencies (i.e. 20 kHz) has been recently reported to enhance the treatment effectiveness, due to a more pronounced difference in electrical ...

Designing an Array of Nanocalorimeters for Screening Biochemical Interactions

F. Torres
Palo Alto Research Center

In this presentation we present our analysis of the PARC Nanocalorimeter. Calorimetry is basically the measuring of heat of chemical reactions or physical changes. Nanocalorimetry is Calorimetry at the Nanometer scale. The PARC Nanocalorimeter is a special type of Calorimeter, it consists of arrays of Nanocalorimeters. The PARC Nanocalorimeter is intended to be used for screening biochemical ...

Finite-element Modeling of Elastic Surface Modes and Scattering from Spherical Objects

O. Falou1, J. C. Kumaradas2, and M. C. Kolios1,2
1Dept. of Electrical and Computer Engineering, Ryerson University, Toronto, ON, Canada
2Dept. of Physics, Ryerson University, Toronto, ON, Canada

In this work, backscatter from an elastic sphere was used to validate the computational model against analytical solutions (Faran theory).Agreements between analytical and finite element solutions were found in the scattered far-field over a range of frequencies of interest (10 - 70 MHz). Oscillations of the elastic sphere at various resonance frequencies (peaks in the power spectrum) were also ...

Some Clinical and Computational Studies On Haemodynamics In Stenosed Artery

A. Chanda, A.R. Choudhury, G. Ray, K. Dasgupta, and D. Nag
Jadavpur University, Kolkata, West Bengal, India

Atherosclerosis in arteries is caused by the formation of stenosis : fatty depositions, on the artery wall. In current medicine, the practice is to observe the maximum percentage occlusion at any arbitrary cross-section and diagnose the patient on that basis, which might not always present the real picture due to non-uniformity of the stenosis thickness. The present work attempts to simulate the ...

Physical and FEM Simulation of Microprobe Insertion into Brain Tissue

A. Eed Olamat, U. Hofmann, B. Pohl, and N. Nkemasong
University of Lübeck, Institute for Signal Processing, Lübeck, Germany

In order to investigate the implantation of microprobes into brain tissue, we developed a finite-element and a physical model to replace real biological tissue for mechanical testing. Penetrating forces of a tungsten indenter into a layered structure was investigated with different indentation speeds. Numerical and physical model are in good correspondence to each other and reproduce measured ...

Dynamic Simulation Of Particle Self-Assembly Applied To Microarray Technology

V. Di Virgilio, A. Coll, S. Bermejo, and L. Castañer
Universitat Politecnica de Catalunya, Barcelona, Spain

In this work we want to explore some techniques, microfluidic and electrospray-ionization based, suitable for dynamic microarrays\' fabrication. The fabrication techniques are based on manipulation and self-assembly of selective coated micro and nanobeads. The simulation will include electro-osmotic flow, species transport, and electrostatics.

Numerical Simulation of Magnetic Drug Targeting with Flow – Structural Interaction in an Arterial Branching Region of Interest

A. Morega, A. Dobre, and M. Morega
University Politehnica of Bucharest, Bucharest, Romania

We report a numerical study on the blood – magnetic carrier aggregate flow in an external magnetic field, for applications such as magnetic drug targeting. The arterial system morphology is complex and patient-related therefore more realistic numerical simulations request medical image-based reconstruction to generate computational domains. Simpleware package is used to generate the ...

Quick Search