Veröffentlichungen und Präsentationen

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Modeling the Rheology of Liquid Detergents

Vincenzo Guida
R&D Process Design Principal Engineer, Procter & Gamble, Italy

Outline of presentation: Comsol is a very flexible platform, ideal to model rheology modification under flow Analogy with reactive flows allows modeling of both thixotropy and gelation with decent level of accuracy and predictability It is possible, to a certain extent, to use 1D rheology to extrapolate 3D behavior ---------------------------------- Keynote speaker's biography:Vincenzo ...

Design Simulations of a General Purpose Research Micro Reactor for Methane Conversion to Syngas.

C. Bouchot[1], and M.A. Valenzuela[1]
[1]Instituto Politécnico Nacional-ESIQIE, México D.F, México

A general purpose stainless steel micro reactor setup for methane conversion is being designed for research purposes. We intend to design and build a modular device that would be able to manage different types of reactions depending on the installed modules. The device should be able to allow the study of gas phase reactions at low (atmospheric) and high pressures (up to 20 MPa), with the ...

High Temperature Process Simulation: An Example in Crystal Growth

H. Rouch[1] and O. Geoffroy[1]
[1]INOPRO, Villard de Lans, France

High temperature processes are used in a large variety of industrial application. Simulation helps to solve technological problems and increase energy efficiency in case of industrial scale simulation. We present in this paper a research equipment simulation. The aim is to increase knowledge of temperature field in the crystal growth region in order to give researcher some important information ...

Localization of Chemical Sources Using Stochastic Differential Equations in Realistic Environments

A. Mohammed, and A. Jeremic
McMaster University, Hamilton, L8S4K1, Canada

Signal processing algorithms for chemical sensing/monitoring have been subject of considerable research interest in the recent years mainly due to their diverse applicability. When the concentration of chemical agent is small, the dispersion of particles is governed by stochastic differential equations describing more complex motion mechanisms such as Brownian motion. In this paper we propose the ...

Coupled Hydrochemical Modeling for the Optimal Design of an In-situ Redox Experiment

P. Trinchero[1], J. Molinero[1], G. Román-Ross[1], A. Nardi[1], L.M. De Vries[1], T. Karvonen[2], P. Pitkänen[3]
[1]Amphos 21, Barcelona, Spain
[2]WaterHope, Helsinki, Finland
[3]Posiva, Eurajoki, Finland

In this work, we present a number of scoping calculations that have been carried out to design an in-situ redox experiment (Figure 1) focused on assessing potential changes in the pH and redox conditions and in the buffering capacity of the Olkiluoto bedrock (i.e. the site for the Finnish spent fuel repository). A characteristic of these models lies in the need to integrate prior information, ...

Constructing COMSOL Models of a Bacteriological Fuel Cell

R. Coker[1], J. Mansell[1]
[1]NASA - Marshall Space Flight Center, Huntsville, AL, USA

We have started constructing preliminary design COMSOL models of a bacteriologically driven \'fuel cell\' that is intended to process waste products, such as carbon dioxide and brine, from a crewed vehicle. At this early stage, this complex system is reduced to two electrodes separated by a membrane. The electrolyte is a brine appropriate for growing methanogenic bateria, though none are ...

Chemical Reactions in a Microfluidic T-Sensor: Numerical Comparison of 2D and 3D Models

R. Winz[1][2], N. Schröder[1], W. Wiechert[1], and E. von Lieres[1]
[1]Institute of Biotechnology 2, Research Centre Jülich, Jülich, Germany
[2]Research Center for Micro and Nanochemistry, University of Siegen, Siegen, Germany

In recent years lab-on-microchip technology has become a powerful tool for micro-scale analysis of biochemical processes. In the studied system the overall process consists of transport, convection, diffusion, reaction and adsorption processes. Two compounds A and B, contained in a carrier fluid (buffer), are introduced into a reaction channel via a Y-shaped double-inlet. As the streams flow ...

The Use of Multiphysics Modeling in the Steel Industry

Filip Van den Abeele
Simulation Expert, OCAS, Belgium

OCAS is a joint venture between ArcelorMittal and the Flemish Region. She uses COMSOL Multiphysics for the following: Enamel solidification Magnetic Pulse Forming Electromagnetic modelling of electric machines Vortex Induced Vibrations Model Identification for Orthotropic Materials and much more ---------------------------------- Keynote speaker's biography:Filip Van den Abeele has a ...

Quick Search

151 - 158 of 158 First | < Previous | Next > | Last