Veröffentlichungen und Präsentationen

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Claus Process Reactor Simulation

J. Plawsky[1],
[1]Rensselaer Polytechnic Institute, Troy, NY, USA

A model was developed to simulate the reaction, concentration field, flow field, and temperature distribution inside a Claus reactor for converting hydrogen sulfide to sulfur. The model considered two ideal reactors, a continuous stirred tank reactor and a plug flow reactor. As expected, two ideal reactors showed much different behaviors in terms of reactant conversion and operating temperature. ...

Optimization of DPF Structures with a 3D-Unit Cell Model

W. Beckert[1], M. Dannowski[1], L. Wagner[1], J. Adler[1]
[1]Fraunhofer IKTS, Dresden, Germany

The 3D unit cell model approach offers an efficient tool to analyze the influences of geometrical design (channel shape and arrangement, filter length, wall thickness) and filter material properties (permeability, soot loading characteristics) on the performance of ceramic particle filter structure in the soot loading process, assessed by pressure loss and soot loading capacity. It does correctly ...

CO2 Storage Trapping Mechanisms Quantification

A. Nardi[1], E. Abarca[1], F. Grandia[1], J. Molinero[1]
[1]Amphos 21, Barcelona, Spain

The capture and storage of CO2 in deep geological formations is one of the proposed solutions to reduce CO2 emissions to the atmosphere. CO2 is injected as a supercritical fluid deep below a confining geological formation that prevents its return to the atmosphere. In general, four trapping mechanisms are expected, which are of increasing importance through time: (1) structural, (2) residual ...

Heat Transfer Modeling of Steam Methane Reforming

E. Carcadea[1], M. Varlam[1], I. Stefanescu[1]
[1]National Research Institute for Isotopic & Cryogenic Technologies, Rm.Vâlcea, Romania

Steam methane reforming is a widely studied process because of its importance for hydrogen production. A two-dimensional membrane-reactor model was developed to investigate the steam-methane reforming reactions. The use of membrane as membrane-reactor separator offer us few advantages because it help in continuously removing the hydrogen from the reaction zone, shifting the chemical equilibrium ...

Ammonia Removal From Water by a Liquid-Liquid Membrane Contactor Under a Closed Loop Regime

E. Licon[1], S. Casas[1], A. Alcaraz[1], J.L. Cortina[1], C. Valderrama[1]
[1]Universitat Politécnica de Catalunya, Barcelona, Spain

Ammonia separation from water by membrane contactor was simulated on transient state and compared with experimental data. Aqueous low concentrated solution of ammonium with high pH has been pumped inside the hydrophobic hollow fibers, acid solution in the outside part. The system is in closed loop configuration. In order to simulate the separation process, equations were developed considering ...

Developments in a Coupled Thermal-Hydraulic-Chemical-Geomechanical Model for Soil and Concrete

S.C. Seetharam[1], D. Jacques[1]
[1]Performance Assessments Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium

This paper documents current status in the development of a coupled thermal-hydraulic-chemical-geomechanical numerical suite within COMSOL-MATLAB environment to address soil and concrete applications. The mathematical formulations are based on well-established continuum scale models unifying mass conservation, energy conservation, charge conservation, thermodynamic equilibrium and kinetics and ...

Numerical Investigation of Mass Transfer with Two-Phase Slug Flow in a Capillary

W. Han, and B.H. Dennis
University of Texas, Arlington, TX, USA

The multiphase flow of two immiscible liquids in a microchannel was investigated numerically. A Y-shape micromixer was designed to produce a pattern of slugs from the flowing liquids. The mass transfer characteristics of this flow pattern are of primary interest in this study. A simple neutralization titration reaction was chosen as the basis. The liquid-liquid two phase slug flow was formed ...

Numerical Study of the Self-ignition of Tetrafluoroethylene in a 100-dm3-reactor

F. Ferrero[1], M. Kluge[1], R. Zeps[1], T. Spoormaker[2]
[1]BAM Federal Institute for Materials Research and Testing, Berlin, Germany
[2]Chairman PlasticsEurope Fluoropolymers TFE Safety Task Force, Du Pont De Nemours, Dordrecht, The Netherlands

The self-ignition of tetrafluoroethylene (TFE) caused by contact with hot surfaces has been analyzed with the help of simulations performed with COMSOL Multiphysics®. The current study focuses on large-scale heated reactors for the industrial production of polytetrafluoroethylene (PTFE) from TFE at high pressures. Simulations of the self-heating and consequent self-ignition of TFE in a ...

Modeling, Simulation, and Optimization of the Catalytic Reactor for Methanol Oxidative Dehydrogenation

T. M. Moustafa, M. Abou-Elreesh, and S.-E. K. Fateen
Department of Chemical Engineering, Cairo University, Cairo, Egypt

A steady state model was developed to investigate the performance of the catalytic partial oxidation tubular reactor for methanol oxidative dehydrogenation. The model utilized the kinetics developed from experimental results for the main reaction and three side reactions. The partial differential equations included in the model were the mass transfer equations for the seven components and the ...

Modeling 3D Calcium Waves from Stochastic Calcium Sparks in a Sarcomere Using COMSOL Multiphysics®

L. T. Izu[1], Z. Coulibaly[2], B. Peercy[2]
[1]University of California-Davis, Davis, CA, USA
[2]University of Maryland, Catonsville, MD, USA

This paper utilizes the COMSOL Multiphysics® general form PDE interface and MATLAB® to model stochastic calcium waves in a sarcomere (basic unit of a heart cell). The model we present here shows the evolution of waves generated from calcium being released stochastically from sites modeled as point sources. The release sites are distributed on z-disc (planes) in a hexagonal pattern, and their ...

Quick Search