Veröffentlichungen und Präsentationen

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Numerical Simulation of Forced and Static Smoldering Combustion

S. Singer[1], W. H. Green[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Transient, two-dimensional (axisymmetric) simulations of a cigarette subject to realistic static and forward smoldering cycles were performed. The computational domain consists of a porous packed bed of tobacco and a filter surrounded by a thin, porous paper and a region of surrounding air. The governing equations include overall mass conservation, momentum conservation, conservation equations ...

Modeling, Simulation, and Optimization of the Catalytic Reactor for Methanol Oxidative Dehydrogenation

T. M. Moustafa, M. Abou-Elreesh, and S.-E. K. Fateen
Department of Chemical Engineering, Cairo University, Cairo, Egypt

A steady state model was developed to investigate the performance of the catalytic partial oxidation tubular reactor for methanol oxidative dehydrogenation. The model utilized the kinetics developed from experimental results for the main reaction and three side reactions. The partial differential equations included in the model were the mass transfer equations for the seven components and the ...

Numerical Study of the Self-ignition of Tetrafluoroethylene in a 100-dm3-reactor

F. Ferrero[1], M. Kluge[1], R. Zeps[1], T. Spoormaker[2]
[1]BAM Federal Institute for Materials Research and Testing, Berlin, Germany
[2]Chairman PlasticsEurope Fluoropolymers TFE Safety Task Force, Du Pont De Nemours, Dordrecht, The Netherlands

The self-ignition of tetrafluoroethylene (TFE) caused by contact with hot surfaces has been analyzed with the help of simulations performed with COMSOL Multiphysics®. The current study focuses on large-scale heated reactors for the industrial production of polytetrafluoroethylene (PTFE) from TFE at high pressures. Simulations of the self-heating and consequent self-ignition of TFE in a ...

Multiphysics Simulations of Granular Sludge on the Optimization of Effluent Treatment Plant

S. Gunsekaran [1], R. C. Thiagarajan[1]
[1]ATOA Scientific Technologies Private Limited, Bangalore, India

Multiphysics Simulations of Physico-chemical and Biological Treatment of wastewater is increasing due to the demand for cost efficient plant design and utilization. Among the many processes, a thorough understanding of the settling behavior of an activated granular sludge in the secondary settler of an Effluent Treatment Plant (ETP) is critical for the plant designers to determine the efficiency ...

Modelling of Heat and Mass Transfer in Food Products

[1]M.B. Andreasen

[1]Danish Technological Institute, Aarhus C, Denmark

The use of the finite element method for understanding and analyzing the freezing and drying processes of food products is in focus in this paper. The objective of this study is to develop a model that can predict temperature distribution and weight loss of food products during the freezing and drying processes. The problem was solved by utilizing heat, mass transfer and moving mesh model. In ...

The Effect of Electrolyte Flow Slots in Tooling Electrodes on Workpiece Surface Finish in Electrochemical Machining

B. Bingham[1]
[1]Oregon State University, Corvallis, OR, USA

Electrochemical machining (ECM) uses electrolysis to precisely remove material at high rates. ECM has many advantages over conventional machining: no tool wear, no induced mechanical or thermal stresses, high removal rates virtually independent of material hardness or strength, and excellent surface finishes. However, challenges can arise during the design of the tooling electrode when ...

Influence of Electrode Kinetics on Lithium-ion Battery Characteristics

H. Machrafi[1,2], S. Cavadias[2]
[1]University of Liège, Thermodynamics of Irreversible Phenomena, Liège, Belgium
[2]University Pierre et Marie Curie, Laboratoire des Procédés Plasma et Traitement de Surface, Paris, France

The purpose of this work is to show whether an important difference in Lithium solid concentration and electrolyte concentration can be observed in a Lithium-ion battery model, when considering either the Butler-Volmer kinetics or the Tafel kinetics for describing the electrode kinetics (including a boundary layer between the electrolyte and the electrode particles). During discharge, the lithium ...

Numerical Modeling and Performance Optimization Study of a Dehumidification Process in Nuclear Waste Storage

P. Geraldini[1]
[1]Sogin Spa, Rome, Italy

One of the main parameters to consider during the nuclear waste storage design phase is the drum corrosion risk. The humid-air corrosion models available in literature predict that, for carbon steel, the phenomena start to become appreciable for relative humidity (RH) values close to 65%. In general, the corrosion rate increases exponentially with relative humidity above the RH threshold. To ...

Mass Transfer from a Single Spherical Bubble with the Presence of Chemical Reaction - the Effect of Interface Contamination at Low Reynolds Number

A. Dani, A. Cockx, and P. Guiraud
Ingénierie des Systèmes Biologiques et des Procédés, CNRS, INRA, INSA, Toulouse, France

The objective of this work is to compute the mass transfer with chemical reaction (first order reaction) from a single spherical bubble at a low Reynolds number by Direct Numerical Simulation. Firstly, the contamination of the bubble's surface by the surfactants is considered, since this can reduce the slip velocity at the interface. The stagnant cap model is used to represent these phenomena and ...

Transport Phenomena and Shrinkage Modeling During Convective Drying of Vegetables

S. Curcio[1] and M. Aversa[1]
[1]Department of Engineering Modeling, University of Calabria, Arcavacata di Rende, CS, Italy

The aim of the present work is the formulation of a theoretical model describing the transport phenomena involved in food drying process. The attention has been focused on the simultaneous transfer of momentum, heat and mass occurring in a convective drier where hot dry air flows, in turbulent conditions, around the food sample. The proposed model does not rely on the specification of interfacial ...

Quick Search