Veröffentlichungen und Präsentationen

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Optimization of the Temperature Distribution in a Chemical Microreactor using a Multi-Segment Integrated Thin Film Heater

T.R. Henriksen, S. Jensen, U. Quaade, and O. Hansen
Technical University of Denmark

COMSOL Multiphysics has been used to study the effect of different heater design parameters on the temperature distribution in a chemical microreactor. The primary objective of the simulations has been to optimize the temperature uniformity inside the reaction chamber. In the simulations, special attention has been given to how the number, positions and widths of the heater strips relate ...

Finite Element Sensitivity Analysis

M. Perry
London School of Economics

In this presentation we study a PZT Distributed Mode Actuator. In particular, we cover the modeling strategy, the governing equations, modeling setup, the solution and validation. The presentation also gives a comparison between the usage of different Numerical Methods for solving the Partial Differential Equations for this particular type of ...

Simulation of a Micro-Analytical Device for Adsorbing Substances from a Fluid

R. Winz1, A. de los Rios Gonzalez2, E. von Lieres3, M. Schmittel2, and W. Wiechert1
1Department of Simulation, University of Siegen, Siegen, Germany
2Department of Organic Chemistry, University of Siegen, Siegen, Germany
3Institute of Biotechnology, Research Centre Jülich, Jülich, Germany

T- or Y-shaped microfluidic channels are chemical measurement devices that have become popular in recent years. Using such microdevices gives a better control of the fluid behavior and the chemical reaction kinetics, due to the small quantity of fluid.The concept of the T-Sensor as state-of-the-art is used to determine coupled processes of diffusion and reaction within a small-scaled system on a ...

A Magnetically Driven Micro-Mixing Device and its Numerical Analysis

A. M. Morega1, J. C. Ordonez2, and M. Morega1
1Politehnica University of Bucharest, Bucharest, Romania
2Florida State University, Tallahassee, FL, USA

In this paper, we present a FEM model of a mixing MEMS μTAS device. A quasistatic magnetic field, produced by sequentially switched DC currents advected through conductors embedded in the device substrate beneath the flow channel, is used to mix the working magnetic fluid, while it is forced to flow through a rib walled channel. The body forces in the magnetized fluid perturb the otherwise ...

Perspectives of Thermo-electro-mechanical Micro Actuators for Micro Switch Applications: Design and Simulation

M. Matmat, M. Al Ahmad, and J. Y. Fourniols
Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS-CNRS), Toulouse, France

In this work, thermo-mechanical simulations employing a 3D finite element analysis (FEA) of a current driven V-shaped actuator is presented. The structure's hot arms consist of polysilicon, which was used as the active material for deflection due to the Joule effect.COMSOL Multiphysics with stationary and parametric solvers was used to calculate the resulting deflection when current is applied. ...

Multiphysics Modeling and Simulation of MEMS based Variometer for Detecting the Vertical Speed of Aircraft in Avionics Applications

K. Umapathi[1], K. Sukirtha[2], C. Sujitha[2], K. A. Noushad[2], Venkateswaran[1], R. Poornima[1], R. Yogeswari[1]
[1]United Institute of Technology, Coimbatore, Tamil Nadu, India
[2]Sri Krishna College of Engineering and Technology, Coimbatore, Tamil Nadu, India

The objective of this work is to develop a MEMS based Variometer to measure the vertical speed and to sense the instantaneous rate of climb or descent in Aircrafts to meet the miniaturization requirements in avionics industry. The design consists of dielectric material in between two micro electrodes. The micro diaphragm is placed on one of the electrode. As the aircraft changes altitude, the ...

Numerical and Experimental Evaluation for Measurement of a Single Red Blood Cell Deformability Using a Microchannel and Electric Sensors

K. Tatsumi[1]
[1]Kyoto University, Kyoto City, Kyoto, Japan

An electric micro-resistance sensor that can continuously measure the deformability of a single red blood cell (RBC) in a microchannel and a numerical model that can simulate the resistance and capacitance of the cell membrane and cytoplasm are developed and improved. The resistance signal pattern between the electrodes is measured to evaluate the feasibility of the present sensor, using the ...

COMSOL Multiphysics Applied to MEMS Simulation and Design

Dr. Piotr Kropelnicki[1]
Mu Xiao Jing[1]
Wan Chia Ang[1]
Cai Hong[1]
Andrew B. Randles[1]

[1]Institute of Microelectronics, Agency for Science, Technology and Research, Singapore, Singapore

In this research, we performed multiple COMSOL Multiphysics® simulations. We analyzed the dispersion curves of waves in a LAMB wave pressure sensor; simulated a thin metal film in a microbolometer and observed the resulting stress; investigated the thermal behavior of an acoustic wave microbolometer; and modeled the fluid-structure interaction (FSI) for piezoelectric-based energy harvesting from ...

Expanding Your Materials Horizons

R. Pryor[1]
[1]Pryor Knowledge Systems, Inc. (COMSOL Certified Consultant), Bloomfield Hills, Michigan, USA

Materials and their related properties are intrinsically fundamental to the creation, development and solution of viable exploratory models when using numerical analysis software. In many cases, simply determining the location, availability and relative accuracy of the necessary material parameters for the physical behavior of even commonly employed design materials can be very difficult and time ...

Control of Rolling Direction for Released Strained Wrinkled Nanomembrane

P. Cendula[1], S. Kiravittaya[1], J. Gabel[1], and O.G. Schmidt[1]

[1]Institute for Integrative Nanosciences, Dresden, Germany

Strained wrinkled and flat nanomembranes have different bending properties when they are released from the underlying substrate. This is caused by increased bending rigidity of the wrinkled film in one direction. We provide theoretical and numerical analysis of the directional rolling of wrinkled films, which is important for positioning rolled-up tubes on the short mesa edge during fabrication.

Quick Search