Veröffentlichungen und Präsentationen

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Design and Simulation of MEMS Based Electrothermal Micromirror for 3D Spatial Movement

D. Mallick, and A. Bhattacharyya
Institute of Radio Physics and Electronics
University of Calcutta
West Bengal, India

Micromirror is a versatile MEMS device, which finds use in many application areas. In this paper, we have addressed the issues related to the design and behavioral simulation of MEMS based electro-thermal micromirror [Figure 1] for 3D motion. Two types of thermal actuation mechanism are used in the designed device. For in-plane movement poly-silicon made two-hot-arm actuatoris used. Here, the ...

COMSOL Multiphysics Modeling of Rotational Resonant MEMS Sensors with Electrothermal Drive

S. Nelson[1], and M. Guvench[1]
[1]University of Southern Maine, Gorham, Maine, USA

COMSOL Multiphysics is employed to model, simulate and predict the performance of a high Q, in-plane rotational resonating MEMS sensor. The resonating sensor disk is driven by thermal expansion and contraction of the support tethers due to AC joule heating. The resonant frequency is sensed by stationary contacts. For cost reduction, the relatively simple, low cost SOIMUMPS fabrication process is ...

Design of Novel Recirculation System for Slow Reacting Assays in Microfluidic Domain

N.N. Sharma, and A. Tekawade
Mechanical Engineering Group, Birla Institute of Technology & Science, Pilani, Rajasthan, India

A simple design for a microfluidic flow system for use in mixing or reacting assays with limited sample availability has been proposed and analyzed using COMSOL\'s multiphysics simulation package. The design is based on differential electroosmotic flow concept which has facilitated a number of interesting flow phenomena in micro-domains. For an average potential drop of about 86 kV/m in the ...

Finite Element Modeling of the Stress Field in a Cell-Seeded Microchannel

G. Zhu, and Y. Li
Lawrence Technological University, Southfield, MI, USA

Fluids used in biomedical microelectromechanical systems (BioMEMS) devices often exhibit very different flow behavior from those in bulk solutions, which in turn affects the behavior of cells and biomolecules in the device. In this work, we investigate an integrated microfluidic system for living cell culture and assay. The system can be used as a generic platform to study the behavior of ...

Applied Multiphysics in Thermoresistive and Magnetoresistive Sensor Models

R.W. Pryor
Pryor Knowledge Systems, Inc.
COMSOL, Certified Partner

Efficient, effective, and functional operation of autonomous systems requires a comprehensive real-time understanding, by those systems, of the embedding environment. This paper presents a brief overview of the multiphysics considerations involved in the development of models for thermoresistive and magnetoresistive sensors systems.

Investigating the Use of a Piezoelectric Actuator for the Appendages of a Microrobot

J. Clark, and J. Clark
Purdue University, West Lafayette, IN, USA

We investigate the use of a piezoelectric actuator for the appendages of a microrobot. Possible uses may include micro assembly, mobile surveillance, etc. What is different about this microrobot is that it uses 2 degrees of freedom, low powered piezoelectric flexures, while attempting to mimic the maneuverability of an ant-like insect. In the paper, we use COMSOL to characterize this type of ...

Effect of Mass Adsorption on a Resonant NEMS

J. J. Ruz Martinez
Instituto de Microelectronica de Madrid
Tres Cantos
Madrid, Spain

The motion of a resonant NEMS has been widely studied for many different applications such as structural mechanics in engineering, ultra sensitive mass spectrometers or the well known Atomic Force Microscope. The study of the eigenfrequencies of such structures is very important, and nowadays there are good theoretical methods to accurately predict such eigenfrequencies. When a little mass is ...

Design and Analysis of Micro-tweezers with Alumina as Gripper Using COMSOL Multiphysics

V. S. Selvakumar, M. S. Gowtham, M. Saravanan, S. Suganthi, and L. Sujatha
Rajalakshmi Engineering College
Chennai, India

Micro-tweezers have been widely investigated because of their extensive applications in micro-fluidics technology, microsurgery and tissue-engineering. It has been reported that thermal actuation provides greater forces and easier control when compared to electrostatic micro actuation. In this paper, we discuss about the effects of Alumina as gripper on the operation of micro tweezers. The ...

Viscous damping of a periodic perforated MEMS microstructure when the Reynolds’ equation cannot be applied: Numerical simulations

D. Homentcovschi[1], and R.N. Miles[1]
[1]Department of Mechanical Engineering, SUNY Binghamton, NY

This paper develops a computational model for determining the total damping coefficient for a unit cell of a MEMS microscale device containing a repetitive pattern of holes. The basic cell of the microstructure is approximated by an axi-symmetric domain and the velocity and pressure fields are determined from solutions of the Navier-Stokes equations using the finite element software package ...

Micro Cooling of SQUID Sensor

B. Ottosson[1], Y. Jouahri[2], C. Rusu[1], and P. Enoksson[2]
[1]Imego AB, Gothenburg, Sweden
[2]Chalmers University of Technology, Gothenburg, Sweden

The objective of this work has been to realize a feasibility study of a cooling device for a SQUID sensor using liquid nitrogen flowing through micro channels. The design consists of an epoxy cylindrical vacuum vessel skewed by a silicon microchannel heat sink. The SQUID sensor is situated directly on top of the microchannel heat sink. The device is used at room temperature and should be able to ...

Quick Search