Veröffentlichungen und Präsentationen

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Finite Element Method as an aid to machine design: A Computational Tool

C. Gupta[1], S. Marwaha[1], and M. Manna[1]
[1] Department of Electrical & Instrumentation Engineering, SLIET , Longowal (Deemed University), Punjab, India

The paper provides an overview of the state of art in computational electromagnetic. There are three major ar eas like Design, optimization and material selection for the electric machines. The computational tool based on finite elements is very useful and powerful field simulation techniques available to assist in the design and performance prediction of electric machines. But the complexity in ...

Developments in a Coupled Thermal-Hydraulic-Chemical-Geomechanical Model for Soil and Concrete

S.C. Seetharam[1], D. Jacques[1]
[1]Performance Assessments Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium

This paper documents current status in the development of a coupled thermal-hydraulic-chemical-geomechanical numerical suite within COMSOL-MATLAB environment to address soil and concrete applications. The mathematical formulations are based on well-established continuum scale models unifying mass conservation, energy conservation, charge conservation, thermodynamic equilibrium and kinetics and ...

Fluid-Structure Interaction Modeling of High-Aspect Ratio Nuclear Fuel Plates Using COMSOL Multiphysics®

F. Curtis[1], K. Ekici[1], J. D. Freels[2]
[1]The University of Tennessee, Knoxville, TN, USA
[2]Oak Ridge National Laboratory, Oak Ridge, TN, USA

The High Flux Isotope Reactor at the Oak Ridge National Lab is in the research stage of converting its fuel from high-enriched uranium to low-enriched uranium. One of the areas being explored is the fluid-structure interaction phenomenon due to the interaction of thin fuel plates (50 mils thickness) and the cooling fluid (water). Detailed computational simulations have only recently become ...

Multiphysics Approach of the Performance of a Domestic Oven

N. Garcia-Polanco[1], J. Capablo[1], J. Doyle[1]
[1]Whirlpool Corporation, Cassinetta di Biandronno (VA), Italy

The heat and mass transfer processes occurring in a domestic oven is in detailed analyzed in this work, with the final objective of improving the global energy efficiency of the system. A 3D Finite Element model developed with a Multi-physics approach is validated with the experimental data from the standard test for energy consumption of the European Union (EN 50304:2001). In this test a brick ...

2D Axial-Symmetric Model For Fluid Flow And Heat Transfer In The Melting And Resolidification Of A Vertical Cylinder

S. Morville[1], M. Carin[1], M. Muller[2], M. Gharbi[2], P. Peyre[2], D. Carron[1], P. Le Masson[1], and R. Fabro[2]
[1]Laboratoire LIMATB, Université de Bretagne Sud, Lorient , France
[2]Laboratoire PIMM, Arts et Métiers ParisTech, Paris, France

Laser direct deposition is a process, different from molding or machining, which allows the producing of fully densified and operational components. This technique involves injecting metal powder through a coaxial nozzle into a melt pool obtained by a moving laser beam. The final object is obtained by superimposing the layers created by the process. The roughness of the functional part is ...

Fluid-Structure Interaction Analysis of a Peristaltic Pump

N. Elabbasi, J. Bergstrom, and S. Brown
Veryst Engineering, LLC.
Needham, MA

Peristaltic pumping is an inherently nonlinear multiphysics problem where the deformation of the tube and the pumped fluid are strongly coupled. We used COMSOL Multiphysics to investigate the performance of a 180 degree rotary peristaltic pump with two metallic rollers, and an elastomeric tube pumping a viscous Newtonian fluid. The model captures the peristaltic flow, the flow fluctuations ...

Propagation of Cathode-Directed Streamer Discharges in Air

Y. Serdyuk[1]
[1]Chalmers University of Technology, Gothenburg, Sweden

Streamers are considered as main cause of electrical breakdown in air at atmospheric pressure. A streamer is an ionization wave propagating in neutral gas which is converted into low-temperature plasma behind its front. A streamer model is based on drift-diffusion approach where space and time evolution of densities of charge carriers is considered. It results in three convection-diffusion PDEs ...

Fluid-structure Interaction Modeling of Air Bearing

H.R. Javani[1], P. Kagan[2], F. Huizinga[1]
[1]ASML - MDev – Mechanical analysis, Veldhoven, The Netherlands
[2]ASML - MDev – System Dynamics, Veldhoven, The Netherlands

Air bearings are special type of bearings which provide nearly zero friction between two surfaces. This is achieved by a compressed layer of gas between the surfaces. This study presents a modeling technique for an Air bearing component. COMSOL Multiphysics® is used to efficiently solve a coupled Fluid-Structure Interaction analysis. Computational time is significantly reduced compared to ...

Numerical Study of the Self-ignition of Tetrafluoroethylene in a 100-dm3-reactor

F. Ferrero[1], M. Kluge[1], R. Zeps[1], T. Spoormaker[2]
[1]BAM Federal Institute for Materials Research and Testing, Berlin, Germany
[2]Chairman PlasticsEurope Fluoropolymers TFE Safety Task Force, Du Pont De Nemours, Dordrecht, The Netherlands

The self-ignition of tetrafluoroethylene (TFE) caused by contact with hot surfaces has been analyzed with the help of simulations performed with COMSOL Multiphysics®. The current study focuses on large-scale heated reactors for the industrial production of polytetrafluoroethylene (PTFE) from TFE at high pressures. Simulations of the self-heating and consequent self-ignition of TFE in a ...

Modeling the Vanadium Oxygen Fuel Cell

F.T. Wandschneider[1], M. Küttinger[1], P. Fischer[1], K. Pinkwart[1], J. Tübke[1], H. Nirschl[2]
[1]Fraunhofer-Institute for Chemical Technology, Pfinztal, Germany
[2]Karlsruhe Institute for Technology, Karlsruhe, Germany

A two-dimensional stationary model of a vanadium oxygen fuel cell is developed in COMSOL Multiphysics®. This energy storage device combines a vanadium flow battery anode and an oxygen fuel cell cathode. The oxygen reduction reaction generates additional water, leading to a degradation of the catalyst performance over time. A logistic function is introduced to the Butler-Volmer equation in order ...

Quick Search